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Shearing Stress in Beams

Shear and Bending
– Although it has been convenient to restrict 

the analysis of beams to pure bending, this 
type of loading is rarely encountered in an 
actual engineering problem.

– It is much common for the resultant internal 
forces to consist of a bending moment and 
shear force.
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Shearing Stress in Beams

Shear and Bending

Pure Bending Bending and Shear Force
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• Distribution of normal and shearing 
stresses satisfies

• Transverse loading applied to a beam 
results in normal and shearing stresses in 
transverse sections.

• When shearing stresses are exerted on the 
vertical faces of an element, equal stresses 
must be exerted on the horizontal faces

• Longitudinal shearing stresses must exist 
in any member subjected to transverse 
loading.
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Shearing Stress in Beams

Shear and Bending
– The presence of a shear force indicates a 

variable bending moment in the beam.
– The relationship between the shear force 

and the change in bending moment is 
given by

dx
dMV = (42)
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Shearing Stress in Beams

Shear and Bending
– Strictly speaking, the presence of shear 

force and resulting shear stresses and 
shear deformation would invalidate some 
of our assumption in regard to geometry of 
the the deformation and the resulting axial 
strain distribution.

– Plane sections would no longer remain 
plane after bending, and the geometry
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Shearing Stress in Beams

Shear and Bending
of the actual deformation would become 
considerably more involved.

– Fortunately, for a beam whose length is 
large in comparison with the dimensions of 
the cross section, the deformation effect of 
the shear force is relatively small; and it is 
assumed that the longitudinal axial strains 
are still distributed as in pure bending.
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Shearing Stress in Beams

Shear and Bending
– When this assumption is made, the load 

stress relationships developed previously 
are considered valid.

– The question now being asked:

When are the shearing effects so large that
they cannot be ignored as a design
consideration?
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Shearing Stress in Beams

Shear and Bending
– It is somehow difficult to answer this 

question. 
– Probably the best way to begin answering 

this question is to try to approximate the 
shear stresses on the cross section of the 
beam.

LECTURE 14. BEAMS: SHEARING STRESS (6.1 – 6.4) Slide No. 9
ENES 220 ©Assakkaf

Shearing Stress in Beams

Shearing Stress due to Bending
– Suppose that a beam is constructed by 

stacking several slabs or planks on top of 
another without fastening them together.

– Also suppose this beam is loaded in a 
direction normal to the surface of these 
slabs. 
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Shearing Stress in Beams

Shearing Stress due to Bending

P

Figure 22

(a) Unloaded Stack of Slabs (b) Unglued Slabs loaded
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Shearing Stress due to Bending

P

Figure 22 (cont’d)

(c) Glued Slabs Unloaded (d) Glued Slabs loaded

Shearing Stress in Beams
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Shearing Stress in Beams

Shearing Stress due to Bending
– When a bending load is applied, the stack 

will deform as shown in Fig. 22a.
– Since the slabs were free to slide on one 

one another, the ends do not remain even 
but staggered.

– Each of the slabs behaves as independent 
beam, and the total resistance to bending 
of n slabs is approximately n times the 
resistance of one slab alone.
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Shearing Stress in Beams

Shearing Stress
– If the slabs of Fig. 22b is fastened or glued, 

then the staggering or relative longitudinal 
movement of slabs would disappear under 
the action of the force.  However, shear 
forced will develop between the slabs.

– In this case, the stack of slabs will act as a 
solid beam.

– The fact that this solid beam does not
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Shearing Stress in Beams

Shearing Stress
exhibit this relative movement of 
longitudinal elements after the slabs are 
glued indicates the presence of shearing 
stresses on longitudinal planes.

– Evaluation of these shearing stresses will 
be determined in the next couple of 
viewgraphs.
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Shearing Stress in Beams

Development of Shear Stress Formula
Consider the free-body diagram of the 
short portion of the beam of Figs. 23 and 
24a with a rectangular cross section shown 
in Fig 24b.
From this figure,

dytdA  =

dAdF  σ=

(43)

(44)
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Shearing Stress in Beams

Development of Shear Stress Formula

P

A B
C D

x +∆x

x

∆x

t
A B

C D

Figure 23
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Shearing Stress in Beams

Development of Shear Stress Formula

A B

C D

V + ∆V

M + ∆MM V

∆x

yy1
c

dy

t

F1 F2

VL VR

VH = τ t ∆x

Figure 24

(a) (b)

(c)
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Shearing Stress in Beams

Development of Shear Stress Formula
The resultant of these differential forces is

integrated over the area of the 
cross section, where σ is the flexural stress 
at a distance y from the neutral axis 
(surface) and is given by

∫= dAF σ

I
My

−=σ (45)
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Shearing Stress in Beams

Development of Shear Stress Formula
Therefore, the resultant normal force F1 on 
the left end of the segment from y1 to the 
top of the beam is

Similarly, the resultant F2 on the right side 
of the element is

( )∫∫ −=−=
c

y

dyty
I

MdAy
I

MF
1

  1

( )∫∫
∆+

−=
∆+

−=
c

y

dyty
I

MMdAy
I

MMF
1

  2

(46)

(47)
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Shearing Stress in Beams

Development of Shear Stress Formula
In reference to Fig. 24c, a summation of 
forces in the horizontal direction yields

( ) ( )
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Shearing Stress in Beams

Development of Shear Stress Formula
The average shearing stress τavg is the 
horizontal force VH divided by the 
horizontal shear area As = t ∆x between 
section A and B. Thus

( ) ( )∫∆
∆

−==
c

ys

H dyty
xtI

M
A
V
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 avgτ (48)
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Shearing Stress in Beams

Development of Shear Stress Formula
In the limit as ∆x approaches zero, we 
have
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Shearing Stress in Beams

Development of Shear Stress Formula
– Recall that equation 42 relates the bending 

moment with the shear force as V = dM/dx.  
In other words, the shear force V at the 
beam section where the stress is to be 
evaluated is given by Eq. 42.

– The integral           of Eq. 49 is called the 
first moment of the area.

∫
c

y

dyty
1
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Shearing Stress in Beams

Development of Shear Stress Formula
– The integral       is usually given the symbol 

Q.  Therefore, Q is the first moment of the 
portion of the cross-sectional area between 
the transverse line where the stress is to 
be evaluated and the extreme fiber of the 
beam.

∫
c

y

dyty
1

 

∫=
c

y

dytyQ
1

 (50)

Extreme Fiber

Extreme Fiber

N.A
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Shear on the Horizontal Face of a Beam Element
• Consider prismatic beam

• For equilibrium of beam element
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• Substituting,
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Shear on the Horizontal Face of a Beam Element
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Shearing Stress in Beams

Example 12
Determine the first moment of area Q for 
the areas indicated by the shaded areas a
and b of Fig. 25.

6 ′′

6 ′′

2 ′′

2 ′′

3 ′′

5.1 ′′

a

b

Figure 25
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Example 12 (cont’d)
First, we need to locate the neutral axis 
from the bottom edge:

( )( ) ( )( ) base from 3
24
72

6262
6232621 ′′==

×+×
×++×

=Cy

5 ′′

6 ′′

3 ′′
·C

2 ′′

N.A

Shearing Stress in Beams
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Shearing Stress in Beams

Example 12 (cont’d)
The first moments of area Qa and Qb are 
found as follows:

6 ′′

6 ′′

2 ′′

2 ′′

3 ′′

5.1 ′′

a

b
· N.A

5 ′′

( )[ ]

[ ] 3

3

in 25.2065.1
2
5.13

in 21235.15

=×





 −=

=×−=

b

a

Q

Q

3 ′′
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Shearing Stress in Beams
Example 13

A beam is made of three planks, 
nailed together.  Knowing that the 
spacing between nails is 25 mm and 
that the vertical shear in the beam is 
V = 500 N, determine the shear force 
in each nail.

SOLUTION:

• Determine the horizontal force per 
unit length or shear flow q on the 
lower surface of the upper plank.

• Calculate the corresponding shear 
force in each nail.
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SOLUTION:

• Determine the horizontal force per 
unit length or shear flow q on the 
lower surface of the upper plank.

m
N3704

m1016.20
)m10120)(N500(

46-

36

=

×

×
==

−

I
VQq

• Calculate the corresponding shear 
force in each nail for a nail spacing of 
25 mm.

mNqF 3704)(m025.0()m025.0( ==

N6.92=F
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Shearing Stress in Beams

Development of Shear Stress Formula
Substituting for dM/dx of Eq. 42 and
of Eq. 50 into Eq. gives  
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dytyQ
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(51)
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Shearing Stress in Beams

Development of Shear Stress Formula
Eq. 51 provides a formula to compute the 
horizontal (longitudinal) and vertical 
(transverse) shearing stresses at each point at 
a beam.  These vertical and horizontal 
stresses are equivalent in magnitude.

x

y

xyτ
xyτ

yxτ

yxτ
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Determination of the Shearing Stress in a Beam
• The average shearing stress on the horizontal 

face of the element is obtained by dividing the 
shearing force on the element by the area of 
the face.

It
VQ

xt
x

I
VQ

A
xq

A
H

ave

=

∆
∆

=
∆
∆

=
∆
∆

=τ

• On the upper and lower surfaces of the beam, 
τyx= 0.  It follows that τxy= 0 on the upper and 
lower edges of the transverse sections.

• If the width of the beam is comparable or large 
relative to its depth, the shearing stresses at D1
and D2 are significantly higher than at D.
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Shearing Stress in Beams
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Shearing Stress in Beams

Shearing Stress Formula
At each point in the beam, the horizontal 
and vertical shearing stresses are given by

It
VQ

=τ
Where
V = shear force at a particular section of the beam
Q = first moment of area of the portion of the cross-sectional area 

between the transverse line where the stress is to be computed.
I = moment of inertia of the cross section about neutral axis
t = average thickness at a particular location within the cross section

(52)
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Shearing Stress in Beams

Shearing Stress Formula
How accurate is the shearing stress 
formula?

• The formula is accurate if t is not too great.
• For a rectangular section having a depth twice 

the width, the maximum stress as computed by 
more rigorous method is about 3% greater than 
that given by Eq. 52.

• If the beam is square, the error is about 12%.
• If the width is four times the depth, the error is 

about 100 %.
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Shearing Stress in Beams

Shearing Stress Formula
How accurate is the shearing stress 
formula?

Great
t is small

3% error
d = 2 t

12% error
d = t

100% error, worst case
4d =  t

d

t
t t t
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Shearing Stress in Beams

Variation of Vertical Shearing Stress in 
the Cross Section

N.A
V

Max Stress
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Shearing Stresses τxy in Common Types of Beams
• For a narrow rectangular beam,

A
V

c
y

A
V

Ib
VQ

xy

2
3

1
2
3

max

2

2

=











−==

τ

τ

• For American Standard (S-beam) 
and wide-flange (W-beam) beams

web

ave

A
V

It
VQ

=

=

maxτ

τ
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Shearing Stress in Beams

Example 14
A machine part has a T-shaped cross 
section and is acted upon in its plane 
of symmetry by the single force 
shown.  Determine (a) the maximum 
compressive stress at section n-n and 
(b) the maximum shearing stress.
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Shearing Stress in Beams

Example 14 (cont’d)

15 in

12 in

1.5 kips n4 in

0.5 in

2 in

0.5 in

n
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Shearing Stress in Beams

Example 14 (cont’d)

15 in

12 in

1.5 kips n

n

1.5 kips

V

M 

V (kip)

1.5
(-)

(+)
M (kip-in)

22.5

n

nMn-n =18

12 in
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Shearing Stress in Beams

Example 14 (cont’d)
First, we need to locate the neutral axis. 
Let’s make our reference from the bottom 
edge.

( )( ) ( )( )

x

r

C

I
yM

yyy

y

max

maxcomten

  Stress Max.

in 833.1in      667.0833.15.2

in 833.1
5.045.02

5.0425.025.021

=

===−=

=
×+×

×++×
=

4 in

0.5 in

2 in

0.5 in
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Shearing Stress in Beams
Example 14 (cont’d)

Next find the moment of inertia about the 
neutral axis:

4 in

0.5 in

2 in

0.5 in

· N.A.
1.833 in

C

( ) ( ) ( ) 4
333

in 417.1
3
167.05.3

3
667.04

3
833.15.0

=







−+=xI

(a) Maximum normal stress is a compressive
stress:

( ) (C) ksi 3.23
417.1
833.118max

max === −

I
cM nnσ
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Shearing Stress in Beams
Example 14 (cont’d)

(b) Maximum shearing stress:
The maximum value of Q occurs at the neutral axis.
Since in this cross section the width t is minimum at
the neutral axis, the maximum shearing stress will
occur there.  Choosing the area below a-a at the
neutral axis, we have

4 in

0.5 in

2 in

0.5 in

N.A.
1.833 in

C· ( )( )

( )
( ) ksi 778.1

5.0 417.1
840.0 5.1

in 840.0833.15.0
2
833.1

max

3

===

==

It
VQ

Q

τ

LECTURE 14. BEAMS: SHEARING STRESS (6.1 – 6.4) Slide No. 47
ENES 220 ©AssakkafFurther Discussion of the Distribution of Stresses 

in a Narrow Rectangular Beam











−= 2

2
1

2
3

c
y

A
P

xyτ
I

Pxy
x +=σ

• Consider a narrow rectangular cantilever beam 
subjected to load P at its free end:

• Shearing stresses are independent of the distance 
from the point of application of the load.

• Normal strains and normal stresses are unaffected 
by the shearing stresses.

• From Saint-Venant’s principle, effects of  the load 
application mode are negligible except in immediate 
vicinity of load application points.

• Stress/strain deviations for distributed loads are 
negligible for typical beam sections of interest.



25

LECTURE 14. BEAMS: SHEARING STRESS (6.1 – 6.4) Slide No. 48
ENES 220 ©Assakkaf

Shearing Stress in Beams
Example 15

A timber beam is to support the three 
concentrated loads shown.  Knowing 
that for the grade of timber used,

psi120psi1800 == allall τσ

determine the minimum required depth 
d of the beam.

SOLUTION:

• Develop shear and bending moment 
diagrams.  Identify the maximums.

• Determine the beam depth based on 
allowable normal stress.

• Determine the beam depth based on 
allowable shear stress.

• Required beam depth is equal to the 
larger of the two depths found.
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Shearing Stress in Beams

Example 15 (cont’d)

SOLUTION:

Develop shear and bending moment 
diagrams.  Identify the maximums.

inkip90ftkip5.7
kips3

max

max
⋅=⋅=

=
M
V
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( )

( ) 2

2
6
1

2
6
1

3
12
1

in.5833.0

in.5.3

d

d

db
c
IS

dbI

=

=

==

=

• Determine the beam depth based on allowable 
normal stress.

( )
in.26.9

in.5833.0
in.lb1090psi 1800 2

3

max

=

⋅×
=

=

d
d

S
M

allσ

• Determine the beam depth based on allowable 
shear stress.

( )
in.71.10

in.3.5
lb3000

2
3psi120

2
3 max

=

=

=

d
d

A
V

allτ

• Required beam depth is equal to the larger of the two.
in.71.10=d


