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Shearing Stress 1n Beams

m Shear and Bending

— Although it has been convenient to restrict
the analysis of beams to pure bending, this
type of loading is rarely encountered in an
actual engineering problem.

— It is much common for the resultant internal
forces to consist of a bending moment and
shear force.
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Shearing Stress 1n Beams

m Shear and Bending

Pure Bending Bending and Shear Force
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+ Transverse loading applied to a beam
results in normal and shearing stresses in
transverse sections.

* Distribution of normal and shearing
stresses satisfies

Fe=[odd=0 M, =]y, —z7,,d4=0
Fy=[tydd=-V M,=[z0,d4=0
Fz:IszdAZO Mz:.[(_yo-x):()

* When shearing stresses are exerted on the

vertical faces of an element, equal stresses
must be exerted on the horizontal faces

* Longitudinal shearing stresses must exist
in any member subjected to transverse
loading.




é.w_’:w‘-}:( LECTURE 14. BEAMS: SHEARING STRESS (6.1 — 6.4) Slide No. 4
Ah,%.

£ 5 —
W ﬁ‘ £ ENES 220 ©Assakkaf
s

Shearing Stress in Beams

m Shear and Bending

— The presence of a shear force indicates a
variable bending moment in the beam.

— The relationship between the shear force
and the change in bending moment is

given by
V=— (42)
dx
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Shearing Stress in Beams

m Shear and Bending

— Strictly speaking, the presence of shear
force and resulting shear stresses and
shear deformation would invalidate some
of our assumption in regard to geometry of
the the deformation and the resulting axial
strain distribution.

— Plane sections would no longer remain
plane after bending, and the geometry
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Shearing Stress in Beams

m Shear and Bending

of the actual deformation would become
considerably more involved.

— Fortunately, for a beam whose length is
large in comparison with the dimensions of
the cross section, the deformation effect of
the shear force is relatively small; and it is
assumed that the longitudinal axial strains
are still distributed as in pure bending.
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i Shearmg Stress 1n Beams

m Shear and Bending

— When this assumption is made, the load
stress relationships developed previously
are considered valid.

— The question now being asked:

When are the shearing effects so large that
they cannot be ignored as a design
consideration?
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Shearing Stress in Beams

m Shear and Bending

— It is somehow difficult to answer this
question.

— Probably the best way to begin answering
this question is to try to approximate the
shear stresses on the cross section of the
beam.
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Shearing Stress in Beams

m Shearing Stress due to Bending

— Suppose that a beam is constructed by
stacking several slabs or planks on top of
another without fastening them together.

— Also suppose this beam is loaded in a
direction normal to the surface of these
slabs.
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Shearing Stress 1n Beams

m Shearing Stress due to Bending

(a) Unloaded Stack of Slabs (b) Unglued Slabs loaded
Figure 22
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Shearing Stress 1n Beams

m Shearing Stress due to Bending

(¢) Glued Slabs Unloaded (d) Glued Slabs loaded

Figure 22 (cont’d)
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Shearing Stress 1n Beams

m Shearing Stress due to Bending

— When a bending load is applied, the stack
will deform as shown in Fig. 22a.

— Since the slabs were free to slide on one
one another, the ends do not remain even
but staggered.

— Each of the slabs behaves as independent
beam, and the total resistance to bending
of n slabs is approximately n times the
resistance of one slab alone.
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Shearing Stress in Beams

m Shearing Stress

— If the slabs of Fig. 22b is fastened or glued,
then the staggering or relative longitudinal
movement of slabs would disappear under
the action of the force. However, shear
forced will develop between the slabs.

— In this case, the stack of slabs will act as a
solid beam.

— The fact that this solid beam does not
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Shearing Stress in Beams

m Shearing Stress

exhibit this relative movement of
longitudinal elements after the slabs are
glued indicates the presence of shearing
stresses on longitudinal planes.

— Evaluation of these shearing stresses will
be determined in the next couple of
viewgraphs.

er
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Shearing Stress in Beams

m Development of Shear Stress Formula

Consider the free-body diagram of the
short portion of the beam of Figs. 23 and
24a with a rectangular cross section shown

in Fig 24b.
From this figure,
dA=tdy (43)

dF = o dA (44)
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Shearing Stress 1n Beams

m Development of Shear Stress Formula

Ax Figure 23
A B v
J- =P .
AN

X \
A B

o E
C D
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Shearing Stress in Beams

m Development of Shear Stress Formula

(@ (b)

' Figure 24
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Shearing Stress in Beams

m Development of Shear Stress Formula
The resultant of these differential forces is
F = _[adA integrated over the area of the
cross section, where o is the flexural stress
at a distance y from the neutral axis
(surface) and is given by

_My

o= (45)
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Shearing Stress in Beams

m Development of Shear Stress Formula

Therefore, the resultant normal force F, on
the left end of the segment from y, to the
top of the beam is

F :—A;[IydA:—A;[jy(tdy) (46)

Similarly, the resultant F, on the right side
of the element is

F= MM gy MM T ogy) (47

hdl
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Shearing Stress in Beams

m Development of Shear Stress Formula

In reference to Fig. 24c, a summation of
forces in the horizontal direction yields

Vi=F—-F

M +AM M §
= yf]y(tdy)—lyf]y(tdy)

(47)

AM ¢
:—T'[y(fdJ’)
N
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Shearing Stress in Beams

m Development of Shear Stress Formula

The average shearing stress gz, is the
horizontal force V,, divided by the
horizontal shear area A, = t Ax between
section A and B. Thus
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Shearlng Stress in Beams

m Development of Shear Stress Formula

In the limit as Ax approaches zero, we
have
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. AM
= gglo—mb’(f dy)
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Shearmg Stress in Beams

m Development of Shear Stress Formula

— Recall that equation 42 relates the bending
moment with the shear force as V = dM/dx.
In other words, the shear force V at the
beam section where the stress is to be
evaluated is Cgiven by Eq. 42.

— The integral Jv¢»  of Eq. 49 is called the
first moment of the area.




g LECTURE 14. BEAMS: SHEARING STRESS (6.1 - 6.4) Slide No. 24
ﬁ ENES 220 ©Assakkaf

Shearlng Stress in Beams

m Development of Shear Stress Formula

— The integraj~ 4 is usually given the symbol
Q. Therefore, Q is the first moment of the
aremeFiner | POrtiON Of the cross-sectional area between
the transverse line where the stress is to
i be evaluated and the extreme fiber of the

NA beam. -
\_< ;
Extreme Fiber
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hear on the Horizontal Face of a Beam Element

* Consider prismatic beam

* For equilibrium of beam element
SF,=0=AH+ [(6p—0op)dA
4

I — dA
I Iy

A

AH =

* Note,
O=[yd4
4

Mp—Mc =%Ax=VAx

Vi n
' * Substituting,
. D VQ
j o n".-\t oy dA é AH:TAx

_'_\"
AH VO
=——=—==shear flow
l 1 A T 7—ﬂ

X
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Shear on the Horizontal Face of a Beam Element

* Shear flow,
| AH _TQ

i =——=—=shear flow
. AT 7
— ¥a e where
L= 24

0= [ydd

A
= first moment of area above y;

I= [y%dA

A+A'

=second moment of full cross section

¥ » Same result found for lower area

_AH VO,
A T
0+0'=0

= first moment with respect
to neutral axis
AH'=-AH
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Shearmg Stress in Beams

m Example 12

Determine the first moment of area Q for
the areas indicated by the shaded areas a
and b of Fig. 25.

:‘ "

1.5" 7

Figure 25




2. LECTURE 14. BEAMS: SHEARING STRESS (6.1 - 6.4) Slide No. 28

—
ENES 220 ©Assakkaf

ﬁ" . .
Shearlng Stress 1n Beams

m Example 12 (cont'd)

First, we need to locate the neutral axis
from the bottom edge:

_ (1)2x6)+(2+3)2x6) 72

c =—=3"from base
B 2x6+2x6 24
5"
C
. —N.A
| | 7
‘% 6” *»‘
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Shearmg Stress 1n Beams

m Example 12 (cont’d)

The first moments of area Q, and Q, are
found as follows:

‘ 2!/

0, =(5-1.53x2]=21in’

4 " 5 .
T80 :( —TJ[I 5x6]=20.25in’

1 . 5 " (:)
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i~ Shearing Stress in Beams
m Example 13
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SOLUTION:

* Determine the horizontal force per
unit length or shear flow ¢ on the
lower surface of the upper plank.

* Calculate the corresponding shear
force in each nail.

A beam is made of three planks,
nailed together. Knowing that the
spacing between nails is 25 mm and
that the vertical shear in the beam is
V=500 N, determine the shear force
in each nail.

£
5

. Example 13 (cont’d)
N

T
0.020 m
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SOLUTION:

* Determine the horizontal force per
unit length or shear flow g on the
lower surface of the upper plank.

—6_3
“'I l"' 0.020 m q= Q = (500N)(120 X_160 4m )
- 1 16.20x10°m
0=4 =3704N/
=(0.020m x 0.100m)(0.060m) m
-6_3
=120x10 "m .
| 3 * Calculate the corresponding shear
=45 (0.020m)(0.100m) force in each nail for a nail spacing of
3 25 mm.
+2[5(0.100m)(0.020m)

+(0.020m x 0.100m)(0.060m )] F=(0.025m)q = (0.025m)(3704 N

=16.20x10°m*
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Shearlng Stress in Beams

m Development of Shear Stress Formula
Substituting for dM/dx of Eq. 42 and 2= Ity dy
of Eq. 50 into Eq. gives

:ciz]\f( IJIW 4

ik

Vo
r=-—= 51
It ( )
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i Shearmg Stress 1n Beams

m Development of Shear Stress Formula

Eq. 51 provides a formula to compute the
horizontal (longitudinal) and vertical
(transverse) shearing stresses at each point at
a beam. These vertical and horizontal
stresses are equivalent in magnitude.

Xy
Xy
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. Determination of the Shearing Stress in a Beam

* The average shearing stress on the horizontal
face of the element is obtained by dividing the
shearing force on the element by the area of
the face.

_AH _gAx_VQ Ax

Ty = =
NN AA T tAx

_e
It

* On the upper and lower surfaces of the beam,
7,,= 0. It follows that 7, ;= 0 on the upper and
lower edges of the transverse sections.

+ If the width of the beam is comparable or large
relative to its depth, the shearing stresses at D,
and D, are significantly higher than at D.
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Shearing Stress in Beams
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Shearing Stress in Beams

m Shearing Stress Formula

At each point in the beam, the horizontal
and vertical shearing stresses are given by

Y

Ly 22)

Where

V = shear force at a particular section of the beam

O = first moment of area of the portion of the cross-sectional area
between the transverse line where the stress is to be computed.

1 = moment of inertia of the cross section about neutral axis

t = average thickness at a particular location within the cross section
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Shearing Stress in Beams

m Shearing Stress Formula

How accurate is the shearing stress
formula?
» The formula is accurate if t is not too great.

* For a rectangular section having a depth twice
the width, the maximum stress as computed by
more rigorous method is about 3% greater than
that given by Eq. 52.

* If the beam is square, the error is about 12%.

« If the width is four times the depth, the error is
about 100 %.




é.w_?;‘w‘-};g LECTURE 14. BEAMS: SHEARING STRESS (6.1 — 6.4) Slide No. 38

—
W ﬁ‘ £ ENES 220 ©Assakkaf
s

Shearing Stress in Beams

m Shearing Stress Formula
How accurate is the shearing stress

formula?
t
o e : |
j |:|
Great 3% error 12% error 100% error, worst case
¢ is small d=2t d=t 4d=t
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Shearing Stress 1n Beams

m Variation of Vertical Shearing Stress in
the Cross Section

Max Stress

NA =-dceicicic oo o
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' Shearing Stresses 7,,in Common Types of Beams

* For a narrow rectangular beam,

oo sv(,
Yo 24 2

3V
Tmax :EZ

* For American Standard (S-beam)
[t v and wide-flange (W-beam) beams

Al B
o
D E|[F ¢ e F :F ! B 149)
‘c Tl || J Tave =
, - P i | i It
] = Tt
D E' F* [*8 E ’ F T = 7V
= =] max = 7
AT B web
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Shearing Stress in Beams

m Example 14

A machine part has a T-shaped cross
section and is acted upon in its plane
of symmetry by the single force
shown. Determine (a) the maximum
compressive stress at section n-n and
(b) the maximum shearing stress.
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i" Shearing Stress in Beams

m Example 14 (cont'd)

< 4in ‘ ! 1.5 kips "
~0.5in < 12 in >
,’\ :
2 1in t
| '”
‘ ‘ ] 15 il’l i
6.5 ih
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i~ Shearing Stress in Beams
m Example 14 (cont'd)
1.5 kips
12 in o n . n
3 m >]
V (kip) (_) :
1.5
I n
3 .
M (kip-in) 15 7
) 1.5 kips
/\
. 225 M

<
i
[oe]

_u




&% LECTURE 14. BEAMS: SHEARING STRESS (6.1 — 6.4) Slide No. 44
= St —
W ﬁ ENES 220 ©Assakkaf

i~ Shearing Stress in Beams

m Example 14 (cont'd)

First, we need to locate the neutral axis.
Let’'s make our reference from the bottom

edge.
< 4in ‘
v (1)(2%0.5)+(2+0.25)(4x0.5) :
05in Vo= =1.8331in
T : 2%x0.5+4x%0.5
5 Vin =2.5-1.833=0.667in  y,, =1.833in=y,,
‘ Max. Stress = M Vi
|| :
0.51in
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i~ Shearing Stress in Beams

m Example 14 (cont’d)

Next find the moment of inertia about the
neutral axis:

3 3 ¥
;0501833 4(0.667) {3.5(0.3167) }Hnmzl

) 3 3

i 0.51in . . .
(a) Maximum normal stress is a compressive
“hin stress:

o = Mo _ 18(1833) _ 3 3k (©)
I 1417 =
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Shearlng Stress in Beams

m Example 14 (cont’d)

(b) Maximum shearing stress:
The maximum value of Q occurs at the neutral axis.
Since in this cross section the width 7 is minimum at
the neutral axis, the maximum shearing stress will
occur there. Choosing the area below a-a at the
neutral axis, we have

0= 1.833 (0 5)(1.833)=0.8401in’
B Q _ 1.5(0.840)

ro =l =1.778 ksi
™o 1417(05)
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*“‘ Further Discussion of the Distribution of Stresses
in a Narrow Rectangular Beam

v * Consider a narrow rectangular cantilever beam
e subjected to load P at its free end:

B 2
3 : - SP[l_y] S

24 2

* Shearing stresses are independent of the distance
from the point of application of the load.

* Normal strains and normal stresses are unaffected
by the shearing stresses.

* From Saint-Venant’s principle, effects of the load
application mode are negligible except in immediate
vicinity of load application points.

+ Stress/strain deviations for distributed loads are
negligible for typical beam sections of interest.
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Shearlng Stress 1n Beams

m Example 15
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a5 'h||s- 1 Lii‘ 2.5 kii“ e SOLUTION

» Develop shear and bending moment
diagrams. Identify the maximums.

allowable normal stress.

:l * Determine the beam depth based on

10 ft——

-

A timber beam is to support the three
concentrated loads shown. Knowing
that for the grade of timber used,

* Determine the beam depth based on
allowable shear stress.

* Required beam depth is equal to the

o =1800psi 7, =120psi
all all larger of the two depths found.

determine the minimum required depth

d of the beam.
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A l l ,.; Example 15 (cont'd)

|'" ft==—3 1t —""'— 3t 2 ft " SOLUTION:
”
e i Develop shear and bending moment
2 Ly 05 kip diagrams. Identify the maximums.
0.5 kip I_.'T_ ¥
=19 i Vimax = 3kips

— 3 kips
" M = 7.5kip - ft = 90kip - in
7.5 kip - fi

6 kip -t
' 6 kip - ft
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Example 15 (cont’d)

* Determine the beam depth based on allowable
normal stress.

b=35in.

M max

Oall =

90x10°Ib-in.
(0.5833in.)d>
d =9.26in.

1800 psi =

* Determine the beam depth based on allowable
shear stress.
=y
120psi :é 30001b
=(0.5833in.)d> 2(3.5in.)d
d =10.71in.

» Required beam depth is equal to the larger of the two.




