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Elastic Design
For many years the elastic theory has 
been the basis for steel structural 
design and analyses.  This theory is 
based on the yield stress of a steel 
structural element.
However, nowadays, it has been 
replaced with a more rational and 
realistic theory, the ultimate stress 
design that is based on the plastic 
capacity of a steel structure.
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Elastic Design

In the elastic theory, the maximum load 
that a structure could support is 
assumed to equal the load that caused 
a stress somewhere in the structure 
equal the yield stress Fy of the material.
The members were designed so that 
computed bending stresses for service 
loads did not exceed the yield stress 
divided a factor of safety (e.g., 1.5 to 2)
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Elastic Design

Elastic Versus Ultimate-based Design of 
Steel Structures

• According to ASD, one factor of safety (FS) is 
used that accounts for the entire uncertainty in 
loads and strength.

• According to LRFD (probability-based), 
different partial safety factors for the different 
load and strength types are used.
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Elastic Design
Engineering structures have been 
designed for many years by the allowable 
stress design (ASD), or elastic design with 
satisfactory results.
However, engineers have long been aware 
that ductile members (e.g., steel) do not fail 
until a great deal of yielding occurs after 
yield stress is first reached.
This mean that such members have 
greater margin of safety against collapse 
than the elastic theory would seem to 
suggest.
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The Elastic Modulus

The yield moment My equals the yield 
stress Fy times the elastic modulus S:

where
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The Elastic Modulus

The elastic modulus for a rectangular 
section b × d as shown in Fig. 1 can be 
computed by using:
– The flexural formula, or
– The internal couple method

d

b

Figure 1
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The Elastic Modulus
Using the Flexural Formula
– Rectangular Cross Section:
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The Elastic Modulus
Using the Internal Couple Method:
– Rectangular Section:
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The Plastic Modulus

The resisting moment at full plasticity 
can be determined in a similar manner.
The result is the so-called plastic 
moment Mp.
It is also the nominal moment of the 
section, Mn

np MM = (2)
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The Plastic Modulus
The plastic ( or nominal) moment equals 
T or C times the lever arm between 
them as shown.
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The Plastic Modulus

The plastic moment is equal to the yield 
stress Fy times the plastic modulus Z.
From the foregoing expression for a 
rectangular section, the plastic modulus 
Z can be seen to equal bd2/4.
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The Plastic Modulus
The shape factor, which is equal

Is also equal to
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So, for rectangular section, the shape factor 
equal 1.5.
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The Plastic Modulus

Shape Factor
– Definition

“The shape factor of a member cross 
section can be defined as the ratio of 
the plastic moment Mp to yield moment 
My”.

– The shape factor equals 1.50 for 
rectangular cross sections and varies from 
about 1.10 to 1.20 for standard rolled-
beam sections
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The Plastic Modulus

Shape Factor
The shape factor Z can be computed from 
the following expressions:
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The Plastic Modulus

Neutral Axis for Plastic Condition
– The neutral axis for plastic condition is 

different than its counterpart for elastic 
condition.

– Unless the section is symmetrical, the 
neutral axis for the plastic condition will not 
be in the same location as for the elastic 
condition.

– The total internal compression must equal 
the total internal tension.
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The Plastic Modulus

Neutral Axis for Plastic Condition
– As all fibers are considered to have the 

same stress Fy in the plastic condition, the 
areas above and below the plastic neutral 
axis must be equal.

– This situation does not hold for 
unsymmetrical sections in the elastic 
condition.
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The Plastic Modulus

Plastic Modulus
– Definitions

“The plastic modulus Z is defined as the 
ratio of the plastic moment Mp to the 
yield stress F Y.”
“It can also be defined as the first 
moment of area about the neutral axis 
when the areas above and below the 
neutral axis are equal.”
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The Plastic Modulus

Example 1
Determine the yield moment My, the plastic 
or nominal moment Mp (Mn), and the plastic 
modulus Z for the simply supported beam 
having the cross section shown in Fig. 4b.  
Also calculate the shape factor and 
nominal load Pn acting transversely 
through the midspan of the beam.  Assume 
that FY = 50 ksi.

CHAPTER 8b. INTRODUCTION TO BEAMS Slide No. 19
ENCE 355 ©Assakkaf

The Plastic Modulus

Example 1 (cont’d)

Pn

12 ft 12 ft

15 in.

8 in.

17 in.

15 in.

1 in.

1 in.

1 in.

Figure 4

(a) (b)
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The Plastic Modulus

Example 1 (cont’d)
Elastic Calculations:
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The Plastic Modulus
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Example 1 (cont’d)
Plastic Calculations:

• The areas above and below the neutral axis 
must be equal for plastic analysis
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The Plastic Modulus

Example 1 (cont’d)
Plastic Calculations (cont’d):
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The Plastic Modulus
Example 1 (cont’d)
– In order to find the nominal load Pn, we 

need to find an expression that gives the 
maximum moment on the beam.  This 
maximum moment occurs at midspan of the 
simply supported beam, and is given by

42/
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The Plastic Modulus

Example 1 (cont’d)
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Theory of Plastic Analysis

The basic theory of plastic analysis is 
considered a major change in the 
distribution of stresses after the 
stresses at certain points in a structure 
reach the yield stress Fy.
The plastic theory implies that those 
parts of the structure that have been 
stressed to the yield stress Fy cannot 
resist additional stresses.



14

CHAPTER 8b. INTRODUCTION TO BEAMS Slide No. 26
ENCE 355 ©Assakkaf

Theory of Plastic Analysis

They instead will yield the amount 
required to permit the extra load or 
stresses to be transferred to other parts 
of the structure where the stresses are 
below the yield stress Fy, and thus in the 
elastic range and able to resist 
increased stress.
Plasticity can be said to serve the 
purpose of equalizing stresses in cases 
of overload.
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Theory of Plastic Analysis
Idealized Stress-Strain Diagram for Steel
– The stress-strain diagram is assumed to 

have the idealized shape shown in Fig. 5.
– The yield stress and the proportional limit 

are assumed to occur at the same point for 
this steel.

– Also, the stress-strain diagram is assumed 
to be a perfectly straight line in the plastic 
range.

– Beyond the plastic range there is a range of 
strain hardening.
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Theory of Plastic Analysis
Figure 5.  Stress-Strain Diagram for Steel
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Theory of Plastic Analysis
Idealized Stress-Strain Diagram for Steel
– The strain hardening range could 

theoretically permit steel members to 
withstand additional stress.

– However, from a practical standpoint, the 
stains occurring are so large that they 
cannot be considered.

– Furthermore, inelastic buckling will limit the 
ability of a section to develop a moment 
greater than Mp, even if strain hardening is 
significant.


