Load Factors

- The load factors are usually amplifying factors that are used in LRFD design equation to increase the loads.
- The purpose of increasing the loads is to account for the uncertainties involved in estimating the magnitudes of dead and/or live loads.

How close (%) could you estimate the worst wind or snow load that will ever be applied to a particular building?
Load Factors

- Since the dead loads can be estimated more accurately than live loads, the factor for live load is usually higher than that used for dead loads.

Examples:
- A load factor of 1.6 for live loads in LRFD steel manual as compared to 1.2 for dead loads.
- A load factor of 1.7 for live loads in ACI Code as compared to 1.4 for dead loads.

Load Factors

- **Loads and Load Combinations**
 - \(1.4 \ (D + F)\)
 - \(1.2 \ (D + F + T) + 1.6 \ (L + H) + 0.5 \ (L_r \ or \ S \ or \ R)\)
 - \(1.2 \ D + 1.6 \ (L_r \ or \ S \ or \ R) + (0.5 \ L \ or \ 0.8 \ W)\)
 - \(1.2 \ D + 1.6 \ W + 0.5 \ L + 0.5 \ (L_r \ or \ S \ or \ R)\)
 - \(1.2 \ D + 1.0 \ E + 0.5 \ L + 0.2 \ S\)
 - \(0.9 \ D + 1.6 \ W + 1.6 \ H\)
 - \(0.9 \ D + 1.0 \ E + 1.6 \ H\)
Load Factors

Notations
- \(U \) = the design (ultimate) load
- \(D \) = dead load
- \(F \) = fluid load
- \(T \) = self straining force
- \(L \) = live load
- \(L_r \) = roof live load
- \(H \) = lateral earth pressure load, ground water pressure.
- \(S \) = snow load
- \(R \) = rain load
- \(W \) = wind load
- \(E \) = earthquake load

Example 1
A floor system has W24 \(\times \) 55 section spaced 8 ft on-center supporting a floor dead load of 50 psf and a live load of 80 psf. Determine the governing load in lb/ft which each beam must support.

For one foot of length of the beam,
area = \(8 \times 1 = 8 \text{ in}^2 \)

Therefore,
- \(D = 55 + 8(50) = 455 \text{ lb/ft} \)
- \(L = 8(80) = 640 \text{ lb/ft} \)
Example 1 (cont’d)

Computing factored loads and noting that D and L are the only loads to be supported, therefore using Eqs. 1 to 7 result in:

1. $U = 1.4(D + F) = 1.4(455 + 0) = 637 \text{ lb/ft}$
2. $U = 1.2(D + F + T) + 1.6(L + H) + 0.5(L_r \text{ or } S \text{ or } R)$
 \[= 1.2(455 + 0) + 1.6(640 + 0) + 0.5(0 \text{ or } 0 \text{ or } 0) \]
 \[= 1570 \text{ lb/ft} \]
 Controls (largest)
3. $U = 1.2D + 1.6(L_r \text{ or } S \text{ or } R) + (0.5L \text{ or } 0.8W)$
 \[= 1.2(455) + 1.6(0) + 0.5(640) = 866 \text{ lb/ft} \]
Load Factors

Example 1 (cont’d)

4. \[U = 1.2D + 1.6W + 0.5L + 0.5(L, \text{ or } S, \text{ or } R) = 1.2(455) + 1.6(0) + 0.5(640) + 0.5(0) = 866 \text{ lb/ft} \]

5. \[U = 1.2D + 1.0E + 0.5L + 0.2S = 1.2(455) + 1.0(0) + 0.5(640) + 0.2(0) = 866 \text{ lb/ft} \]

6. \[U = 0.9D + 1.6W + 1.6H = 0.9(455) + 1.6(0) + 1.6(0) = 409.5 \text{ lb/ft} \]

7. \[U = 0.9D + 1.0E + 1.6H = 0.9(455) + 1.0(0) + 1.6(0) = 409 \text{ lb/ft} \]

Example 2

The various axial loads for a building column have been computed according to the applicable building code with the following results: dead load = 200 k, load from roof = 50 k (roof live load), live load from floor = 250 k, compression wind = 80 k, tensile wind = 65 k, compression earthquake = 60 k, and tensile earthquake = 70 k.

Determine the critical design load using the combinations provided by Eqs. 1 to 7.
Load Factors

Example 2 (cont’d)

1. \(U = 1.4(D + F) = 1.4(200 + 0) = 280 \text{ k} \)
2. \(U = 1.2(D + F + T) + 1.6(L + H) + 0.5(L, \text{ or } S \text{ or } R) \)
 \[= 1.2(200 + 0 + 0) + 1.6(250 + 0) + 0.5(50) \]
 \[= 665 \text{ k} \]
 Controls (largest)
3. \(U = 1.2D + 1.6(L, \text{ or } S \text{ or } R) + (0.5L \text{ or } 0.8W) \)
 a. \(U = 1.2(200) + 1.6(50) + 0.5(250) = 445 \text{ k} \)
 b. \(U = 1.2(200) + 1.6(50) + 0.8(80) = 384 \text{ k} \)
 c. \(U = 1.2(200) + 1.6(50) + 0.8(–65) = 268 \text{ k} \)

4. \(U = 1.2D + 1.6W + 0.5L + 0.5(L, \text{ or } S \text{ or } R) \)
 a. \(U = 1.2(455) + 1.6(80) + 0.5(250) + 0.5(50) = 518 \text{ k} \)
 b. \(U = 1.2(455) + 1.6(–65) + 0.5(250) + 0.5(50) = 286 \text{ k} \)
5. \(U = 1.2D + 1.0E + 0.5L + 0.2S \)
 a. \(U = 1.2(200) + 1.0(60) + 0.5(250) + 0.2(0) = 425 \text{ k} \)
 b. \(U = 1.2(200) + 1.0(–70) + 0.5(250) + 0.2(0) = 295 \text{ k} \)
6. \(U = 0.9D + 1.6W + 1.6H \)
 a. \(U = 0.9(200) + 1.6(80) + 1.6(0) = 308 \text{ k} \)
 b. \(U = 0.9(200) + 1.6(–65) + 1.6(0) = 76 \text{ k} \)
7. \(U = 0.9D + 1.0E + 1.6H \)
 a. \(U = 0.9(200) + 1.0(60) + 1.6(0) = 240 \text{ k} \)
 b. \(U = 0.9(200) + 1.0(–70) + 1.6(0) = 110 \text{ k} \)
Strength (or Resistance) Factors

- Strength factors are usually reduction factors that applied to the strength (stress, force, moment) of the member to account for the uncertainties in material strengths, dimensions, and workmanship.

- With a resistance factor, the designer attempts to account for imperfection in analysis theory, variation in material properties, and imperfect dimensions.

- This can be accomplished by multiplying the theoretical ultimate strength (also called nominal strength) of each member by a capacity reduction factor ϕ, which generally less than one.

- These values are 0.85 for columns, 0.75 or 0.90 for tension members, 0.90 for bending or shear in beams, and so on.

- Typical reduction factors are provided in Table 1 (Table 2.2, Text).
Strength (or Resistance) Factors

Table 1. Typical Resistance (Strength) Factors

<table>
<thead>
<tr>
<th>Type of Loading</th>
<th>(\phi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bearing on the projected areas of pins, web yielding under concentrated loads,</td>
<td>1.00</td>
</tr>
<tr>
<td>slip-resistant bolt shear values</td>
<td></td>
</tr>
<tr>
<td>Beams on bending and shear, fillet welds with stress parallel to weld axis,</td>
<td>0.90</td>
</tr>
<tr>
<td>groove welds base metal</td>
<td></td>
</tr>
<tr>
<td>Columns, web crippling, edge distance, and bearing capacity at holes</td>
<td>0.85</td>
</tr>
<tr>
<td>Shear on effective area of full-penetration groove welds, tension normal to</td>
<td>0.80</td>
</tr>
<tr>
<td>the effective area of partial-penetration groove welds.</td>
<td></td>
</tr>
<tr>
<td>Bolts in tension, plug, or slot welds, fracture in the net section of tension</td>
<td>0.75</td>
</tr>
<tr>
<td>members</td>
<td></td>
</tr>
<tr>
<td>Bearing on bolts (other than A307)</td>
<td>0.65</td>
</tr>
<tr>
<td>Bearing on concrete foundations</td>
<td>0.60</td>
</tr>
</tbody>
</table>

Reliability and the LRFD Specification

- Reliability
 - The reliability of an engineering system can be defined as the system’s ability to fulfill its design functions for a specified period of time.
 - In the context of this course, it refers to the estimated percentage of times that the strength of a member will equal or exceed the maximum loading applied to that member during its estimated life (say 25 years).
Reliability and the LRFD Specification

- Reliability
 - Motivation
 - Assume that a designer states that his or her designs are 99.6 percent reliable (this is usually the case obtained with most LRFD design).
 - If we consider the designs of 1000 structures, this does not mean that 4 of the 1000 structures will fall flat on the ground, but rather it means that those structures at some time will be loaded into the plastic range and perhaps the strain hardening range. So excessive deformation and slight damage might occur, but a complete failure.

- LRFD Specification
 - In the previous example, it would be desirable to have 100%-reliability.
 - However, this is an impossible goal statistically. There will always be a chance of failure (unreliability), say 2 or 3%.
 - The goal of the LRFD Specification was to keep this to very small and consistent percentage.
Reliability and the LRFD Specification

LRFD Specification

- To do this, the resistance or strength R of each member of steel structure as well as the maximum loading Q, expected during the life of the structure, are computed.
- A structure then is said to be safe if

$$R \geq Q \quad (1)$$

LRFD Specification

- General Form

$$\phi R_n \geq \sum_{i=1}^{m} \gamma_i L_{ni} \quad (2)$$

Where
- ϕ = strength reduction factor
- γ_i = load factor for the i^{th} load component out of n components
- R_n = nominal or design strength (stress, moment, force, etc.)
- L_{ni} = nominal (or design) value for the i^{th} load component out of m components
Reliability and the LRFD Specification

- Probability Based-design Approach Versus Deterministic Approach

\[
\frac{R_n}{FS} \geq \sum_{i=1}^{m} L_i \\
\text{ASD}
\]

\[
\phi R_n \geq \sum_{i=1}^{m} \gamma_i L_i \\
\text{LRFD}
\]

- According to ASD, one factor of safety (FS) is used that accounts for the entire uncertainty in loads and strength.
- According to LRFD (probability-based), different partial safety factors for the different load and strength types are used.

Reliability and the LRFD Specification

- LRFD Specification
 - The actual values of \(R \) and \(Q \) are random variables and it is therefore impossible to say with 100% certainty that \(R \) is always equal or greater than \(Q \) for a particular structure.
 - No matter how carefully a structure is designed, there will be always some chance that \(Q \) exceeds \(R \) as shown in Figure 1.
Reliability and the LRFD Specification

- LRFD Specification

- Load Effect (L)
- Strength (R)

Failure probability ($Q(0)$)

Area for $g < 0$

Origin 0

Random Value

Figure 1

Reliability and the LRFD Specification

- LRFD Specification

- Reliability Index β
 - A measure of reliability can be defined by introducing a parameter β, called the reliability index.
 - β can be computed using structural reliability theory and knowledge of the first and second moment statistical characteristics (i.e., mean and COV) for both the strength and load variables.
Reliability and the LRFD Specification

- **Reliability Index \(\beta \) (cont’d)**
 - For two variables and linear performance function, the reliability index \(\beta \) can be defined as the shortest distance from the origin to the failure line as shown in Fig. 2. Mathematically, it can be expressed as

 \[
 \beta = \frac{\mu_R - \mu_Q}{\sqrt{\sigma_R^2 - \sigma_Q^2}} \tag{2}
 \]

 where:
 - \(\mu \) = mean value of strength or load variable
 - \(\sigma \) = standard deviation of strength or load variable

The reliability index \(\beta \) is the shortest distance from the origin to the failure surface.
Reliability and the LRFD Specification

- Reliability Index β (cont’d)

 - The important relationship between the reliability index β and the probability of failure P_f is given by

 \[P_f = 1 - \Phi(\beta) \] \hspace{1cm} (3)

 where $\Phi(.)$ = cumulative probability distribution function of the standard normal distribution.

Target Reliability Indices or Levels (AISC)

<table>
<thead>
<tr>
<th>Structural Type</th>
<th>Target Reliability Level (β_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metal structures for buildings (dead, live, and snow loads)</td>
<td>3</td>
</tr>
<tr>
<td>Metal structures for buildings (dead, live, and wind loads)</td>
<td>2.5</td>
</tr>
<tr>
<td>Metal structures for buildings (dead, live, and snow, and earthquake loads)</td>
<td>1.75</td>
</tr>
<tr>
<td>Metal connections for buildings (dead, live, and snow loads)</td>
<td>4 to 4.5</td>
</tr>
<tr>
<td>Reinforced concrete for buildings (dead, live, and snow loads)</td>
<td></td>
</tr>
<tr>
<td>ductile failure</td>
<td>3</td>
</tr>
<tr>
<td>brittle failure</td>
<td>3.5</td>
</tr>
</tbody>
</table>
Advantages of LRFD

- Provides a more rational approach for new designs and configurations.
- Provides consistency in reliability.
- Provides potentially a more economical use of materials.
- Allows for future changes as a result of gained information in prediction models, and material and load characterization.
- Easier and consistent for code calibration.

Computer Example

- The computer program INSTEP32 design software can be used to perform the necessary calculations for load combinations provided by Eqs. 1 through 7.
- This program can also assist you in solving many of the problems presented in the textbook.
Computer Example

Installation of INSTEP32

1. Insert the CD-ROM in your computer.
2. In Windows Explorer, open the INSTEP32 directory on the CD-ROM.
3. Double-click on Setup.
4. The Setup program will guide you through the installation process.

INSTEP32 can be started by clicking the INSTEP32 icon on the Start Menu on the desktop.

Computer Example

Example 3: Load Combinations

- To perform the calculations for load combinations, start INSTEP32 and then select Design—Load Combinations from the menu bar.
- After you have done this, that data entry dialogue shown in the following slides will appear.
Computer Example

Example 3: Load Combinations (cont'd)

[Image of a computer interface showing load combinations]

Computer Example

Example 3: Load Combinations

[Image of a computer interface showing load combinations]

Special design conditions:

- Loads are for a garage
- Loads are for an area of public assembly
- Live load is greater than 100 psf
- Lateral load counteracts wind or seismic loads

The units associated with the specified load components are kips and inches.

The load combinations calculated are those specified in ASCE 7-98.
Computer Example

Example 3: Load Combinations

Using the computer program INSTEP32, compute the governing factored loads for each of the following: $D = 200\, k$, $L_r = 50\, k$, $L = 250\, k$, $W = 80\, k$, and $E = 60\, k$.

The input and output of the program is shown in the next slides. Therefore, the critical factored load for design is 665\, k.
Example 3: Load Combinations (cont’d)

Specified Load Components

<table>
<thead>
<tr>
<th>Load Component</th>
<th>Axial</th>
<th>Bending</th>
<th>Shear</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dead Load D</td>
<td>200.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>Live Load L</td>
<td>250.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>Roof Live Load L</td>
<td>50.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>Fluid Load F</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>Lateral Load N</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>Earthquake Load E</td>
<td>50.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>Rain Load R</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>Snow Load S</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>Wind Load W</td>
<td>80.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
</tbody>
</table>

Critical Factored load

Critical Factored load

Calculated Combined loading using ASCE 7-98

<table>
<thead>
<tr>
<th>Load Combination</th>
<th>Axial</th>
<th>Bending</th>
<th>Shear</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4 (D+F)</td>
<td>280.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Load Combinations</th>
<th>Axial</th>
<th>Bending</th>
<th>Shear</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2 (D+F) + 1.6 (L+H) + 0.5L</td>
<td>665.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>1.2 (D+F) + 1.6 (L+H) + 0.5S</td>
<td>640.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>1.2 (D+F) + 1.6 (L+H) + 0.5R</td>
<td>640.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Load Combinations</th>
<th>Axial</th>
<th>Bending</th>
<th>Shear</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2D + 1.6Lr + 0.5L</td>
<td>445.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>1.2D + 1.6S + 0.5L</td>
<td>365.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>1.2D + 1.6R + 0.5L</td>
<td>365.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>1.2D + 1.6Lr + 0.5S</td>
<td>384.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>1.2D + 1.6S + 0.5R</td>
<td>384.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>1.2D + 1.6R + 0.5R</td>
<td>384.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
</tbody>
</table>
Computer Example

Example 3: Load Combinations (cont’d)

<table>
<thead>
<tr>
<th>Group</th>
<th>Load Combinations</th>
<th>Axial</th>
<th>Bending</th>
<th>Shear</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 4</td>
<td>1.2D + 1.6W + 0.5L + 0.5Lr</td>
<td>518.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td></td>
<td>1.2D + 1.6W + 0.5L + 0.5S</td>
<td>491.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td></td>
<td>1.2D + 1.6W + 0.5L + 0.5R</td>
<td>491.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group 5</th>
<th>Load Combination</th>
<th>Axial</th>
<th>Bending</th>
<th>Shear</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.2D + 1.0E + 0.5L + 0.2S</td>
<td>425.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group 6</th>
<th>Load Combination</th>
<th>Axial</th>
<th>Bending</th>
<th>Shear</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.9D + 1.6W + 1.8R</td>
<td>308.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group 7</th>
<th>Load Combination</th>
<th>Axial</th>
<th>Bending</th>
<th>Shear</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.9D + 1.0E + 1.6H</td>
<td>240.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
</tbody>
</table>