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Matrix Operations

� Matrix Inversion
� The inverse of an n × n matrix A is an n × n

matrix B having the property that
AB = BA = I

� B is called the inverse of A and is usually 
denoted by A-1.

� Hence,
A-1 A = I
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Matrix Operations

� Matrix Inversion
� Properties:

� If a square matrix A has an inverse, it is said to 
be invertible or nonsingular.

� If it dose not possess an inverse, it is singular.
� In particular, the identity or unit matrix I is 

invertible and is its own inverse since

II = I
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Matrix Operations

� Matrix Inversion
� The inverse can be determined by forming 

n2 simultaneous equations and solving for 
n2 unknowns.
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Matrix Operations

� Matrix Inversion
� Therefore,
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Matrix Operations

� Matrix Inversion
� Hence, the following for simultaneous 

equations can be solved for cij given the 
values aij of the original matrix A:
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� Example 1: Matrix Inversion
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� Example 1 (cont�d): Matrix Inversion
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� Example 2: Matrix Inversion

Find A-1 if 
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� Example 2 (cont�d): Matrix Inversion
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� Example 2 (cont�d): Matrix Inversion
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� Example 2 (cont�d): Matrix Inversion
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� Matrix Singularity
� If the inverse of a matrix exists, then the 

matrix is nonsingular.
� If the inverse does not exist, then the 

matrix is singular.
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Matrix Operations

� Matrix Singularity
� Matrix Singularity and System of Equations

� One implication of matrix singularity in solving a 
system of simultaneous equations is that a 
unique solution for the equation does not exist.

� If the matrix is singular, the system of equation 
will not have a solution.
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Matrix Operations

� Matrix Singularity
� Matrix Singularity and System of 

Equations

If 2a = b, then there are an infinite number of solutions.
For example, three possibilities are:
1) X1 = 2, X2 = 1, a = 7, and b = 14
2) X1 = -1, X2 = 4, a = 10, and b = 20
3) X1 = 0, X2 = -2, a = -6, and b = -12
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Matrix Operations

� Matrix Singularity
� Matrix Singularity and System of 

Equations

If a ≠ b, then there is no feasible solution.
For example, if a = 2 and b =3, there are no values of X1

and X2 that can satisfy the equality of the two equations.
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Matrix Operations

� Trace of a Matrix
� The trace of square matrix is the sum of 

the diagonal elements as defined by
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Matrix Operations

� Trace of a Matrix
� Example:

Find the trace of the following matrices:
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� Matrix Augmentation
� Matrix augmentation is the addition of a 

column or columns to the initial matrix
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Matrix Operations

� Examples: Matrix Augmentation
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� Submatrices and Partitioning
� Given any matrix A, a submatrix of A is a 

matrix obtained from A by removing any 
number of rows or columns.

� Thus if
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Matrix Operations

� Submatrices and Partitioning

� Then B and C are both submatrices of A
� B is obtained by removing from A the first and 

second rows together with the first and third columns
� C is obtained by by removing from A the second, 

third, and fourth rows together with the first column.
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� Submatrices and Partitioning
� A matrix can be partitioned by separating it 

into smaller matrices.
� For example, matrix A can be partitioned 

into four other matrices as
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� Example: Matrix Partition
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Vectors

� Definitions
� A vector is a 1 × n or n × 1 matrix
� A 1 × n matrix is called a row vector
� An n × 1 matrix is called a column vector
� The elements are called the components

of the vector.
� The number of components, in this case, is 

its dimension.
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Vectors

� Examples: Vectors
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� Vectors in Space
� The name vector indicates that a one-

dimensional matrix with n elements can be 
represented as a vector in n-dimensional 
space, with one end of the vector at a point 
and the the other end at another point.

( ) ( ) ( ) ( )[ ]
nn XXXXXXXXPP PPXPPPPPV 12121212 33221112

−−−−=− K

© Assakkaf

Slide No. 97

� A. J. Clark School of Engineering � Department of Civil and Environmental Engineering

ENCE 203 � CHAPTER 2c. MATRICES

Vectors

� Vector in Two-dimensional Space
� In general the vector in two-dimensional 

space is given by
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Vectors

� Example: Vector in Two-dimensional 
Space

X1

X2

V P2(5,4)
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Vectors

� Examples: Vector in Two-dimensional Space
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Vectors

� Examples: Vector in Two-dimensional 
Space
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Vectors

� Vector Operations
� The matrix operations of addition, 

subtraction, and multiplication can be 
applied to vectors.

� Two row (or column) vectors can be added 
or subtracted.

� A row vector with n elements can be 
postmultiplied by a column vector with n
elements to equal a scalar value
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Vectors

� Example: Vector Operations
Find V1 + 3V2, V2 - 2V1, and V1

TV2 if  
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Vectors

� Example (cont�d): Vector Operations
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Vectors

� Example (cont�d): Vector Operations
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Vectors

� Orthogonal and Normalized Vectors
� Two vectors are said to be orthogonal if 

their product equals zero.
� For the vector product A�B, A is a row 

vector and B is a column vector, the 
resulting vector product is a scalar value.

� If two vectors that are orthogonal are 
plotted in the n-dimensional space, the 
vectors will be perpendicular to each other.
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Vectors

� Example: Orthogonal Vectors

A

B
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Vectors

� Example: Orthogonal Vectors

[ ] [ ] [ ]01212
3
3

 44 =+−=
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=•BA

Since the vector product is zero, the vectors are
perpendicular (orthogonal) to each other.
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Vectors

� Length (magnitude) of a Vector
The length or magnitude of a vector V
equals the square root of the sum of the 
squares of its elements, that is

∑
=

==
n

i
ivVV

1

2   ofLength 
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Vectors

� Normalized Vector
� A vector is said to be normalized if each 

elements of the vector is divided by its 
length.

� A normalized vector has a length that is 
equal to one.

� A unit vector is also a normalized vector.
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� Orthonormal Vectors
Two vectors that are both normalized and 
orthogonal to each other are said to 
orthonormal vectors

© Assakkaf

Slide No. 111

� A. J. Clark School of Engineering � Department of Civil and Environmental Engineering

ENCE 203 � CHAPTER 2c. MATRICES

Vectors

� Example
For the following vectors V1 and V2, 
perform the following:
1. Find their lengths (magnitudes)
2. Normalize them,
3. State whether they are orthonormal

[ ]














−
=−=

1
1
1

              532 21 VV
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� Example (cont�d)
( ) ( ) ( )
( ) ( ) ( ) 732.13111 ofLength 

164.638532 ofLength 
222

2

222
1

==−+−+−=

==+−+=

V

V

The normalized vectors are:





 −−−=





 −=

3
1

3
1

3
1

38
5

38
3

38
2

2

1

n

n

V

V

Since the V1V2 = 0, V1 and V2 are orthogonal.
Vn1 and Vn2 are orthonormal.


