
1

• A. J. Clark School of Engineering •Department of Civil and Environmental Engineering

Third Edition
CHAPTER

9

Making Hard Decision
Duxbury
Thomson 
Learning

ENCE 627 – Decision Analysis for Engineering
Department of Civil and Environmental Engineering

University of Maryland, College Park

Theoretical Probability Models

FALL 2003
By

Dr . Ibrahim. Assakkaf

CHAPTER 9. THEORETICAL PROBABILITY MODELS Slide No. 1
ENCE 627 ©Assakkaf

Duxbury
Thomson 
Learning

Counting Sample Points

Fundamental Principle of Counting
– In many cases, a probability problem can 

be solved by counting the number of points 
in the sample space S without actually 
listing each elements.

– In experiments that result in finite sample 
spaces, the process of identification, 
enumeration, and counting are essential 
for the purpose of determining the 
probabilities of some outcome of interest.
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Counting Sample Points
Multiplication Principle

1. If an operation can be performed 
in n1 ways, and if for each of these 
a second operation can be 
performed in n2 ways, then the 
two operations can be performed 
together in n1n2 ways.

2. In general, if there are nk
operations, then the nk operation 
can be performed together in 
n1n2n3……nk
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Counting Sample Points

Example:
– How many sample points are in the sample 

space when a pair of dice are thrown 
once?

– The first die can land in any one of n1 = 6 
ways.  For each of these 6 ways the 
second die can also land in n2 = 6 ways.  
Therefore, a pair of dice can land in
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Counting Sample Points

Sample space points = (6) (6) = 36 points

Example (cont’d)
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Counting Sample Points

Example: Three Cars
• Assume that a car can only be in good (G) 

operating condition or bad (B) operating 
condition.

• If there are three cars, the following situations 
are possible:

B
B
B

G
B
B

B
G
B

B
B
G

B
G
G

G
B
G

G
G
B

G
G
G

Sample space points = (2) (2) (2) = 8 events
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Counting Sample Points

Example (cont’d): Three Cars

BBGGB

GBGGG

BBB

BGB
BGG
GBB

GGB
GGG

Combined 
Outcomes

B

B
G
B

B
G

Car 3

B
G
B

G

Car 2Car 1

BBGGB

GBGGG

BBB

BGB
BGG
GBB

GGB
GGG

Combined 
Outcomes

B

B
G
B

B
G

Car 3

B
G
B

G

Car 2Car 1
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Counting Sample Points

Permutation
The permutation of r elements from a set of n
elements is the number of arrangements that can 
be made by selecting r elements out of the n
elements:

The order of selection counts in determining these 
arrangements (order matters)

( ) nr
rn

nP nr ≤≤
−

= 0for       
!

!
,
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Counting Sample Points

Combination
The combination of r elements from a set of n
elements is number of arrangement that can be 
made by selecting r elements out of the n
elements:

The order of selection does not counts in 
determining these arrangements (order does not 
matter)

( )( ) nr
rnr

n
r
n

C nr ≤≤
−

=







= 0for       

!!
!

,
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Counting Sample Points

Example: Permutations and 
Combinations

From a committee of 10 people:
a) In how many ways we can choose a 

chairperson, a vice chairperson, and a 
secretary, assuming that one person 
cannot hold more than one position?

b) In how many ways can we choose a 
subcommittee of 3 people?
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Counting Sample Points

Example: (cont’d)
• Number of permutations:

• The number of combinations:

( )  ways720
)!310(
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!
, =

−
=

−
=

rn
nP nr
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Counting Sample Points
Example: Standard 52-Card Deck

A) In drawing 5 cards from a 52-card deck 
without replacement, what is the probability of 
getting 5 spade? (note: order does not matter)

n(S) = C5,52 n(E) = C5,13

( )

( )
0005.0

2598960
1287

!552!5
!52

!513!5
!13

)(
)()P(

52,5

13,5 ≈=

−

−===
C
C

Sn
EnE
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Counting Sample Points

Example: Standard 52-Card Deck
B) In drawing 5 cards from a 52-card deck 

without replacement, what is the probability of 
getting 2 kings and 3 queens?
n(S) = C5,52 n(E) = C2,4 C3,4

( )
000009.0

2598960
1287

!552!5
!52

24
)(
)()P(

52,5

4,34,2 ≈=

−

===
C

CC
Sn
EnE

( ) ( ) ( ) 24
!34!3

!4
!24!2

!4
4,34,2 =

−
•

−
== CCEn
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Counting Sample Points

Example: Counting for Bridge Failure
Consider a bridge that is supported by three 
cables.  The failure of interest is the failure of 
only two cables out of three cables since it 
results in failure of the bridge.  What is the 
number of combinations of r = 2 out of n = 3 
that can result in bridge failure?

( ) ( ) 3
)1)(1)(2(
)1)(2)(3(

!23!2
!3

!!
!

, ==
−

=
−

=
rnr
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Counting Sample Points

Example (cont’d): Counting for Bridge 
Failure

This number of combinations can be 
established by enumeration.  The following 
events can be defined:

Ci = failure of cable i,where i =1, 2, and 3

The following events result in bridge failure:

323121                   CCCCCC ∩∩∩
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Counting Sample Points

Example (cont’d): Counting for Bridge 
Failure

If we assume that the order of failure of the 
bridge is a factor, then the possible events 
become

Therefore, the number of combinations in this 
case is six

231312

323121

                  
                  

CCCCCC
CCCCCC

∩∩∩
∩∩∩

( ) ( ) 6
)1(

)1)(2)(3(
!23

!3
!

!
, ==

−
=

−
=
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Counting Sample Points

Example (cont’d): Counting for Bridge 
Failure

Now, if we assume that the bridge is supported 
by 20 cables, and the failure of 8 cables results 
in the failure of the bridge, what is the number 
of combinations that can result in bridge 
failure?

( ) ( ) 125970
)!12)(1)...(6)(7)(8(
)!12)(13)...(19)(20(

!820!8
!20

!!
!

, ==
−

=
−

=
rnr
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Counting Sample Points

Example (cont’d): Counting for Bridge 
Failure

For a real bridge, its failure can result from the 
failure of at least r = 8 out of n = 20.  The 
number of combinations in this case is

( ) )!0(!20
!20...

)!10(!10
!20

)!11(!9
!20

!12!8
!2020

8
, ++++=∑

=r
nrC
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Commonly Used Probability 
Distributions

Any mathematical model satisfying the 
properties of PMF or PDF and CDF can 
be used to quantify uncertainties in a 
random variable.
There are many different procedures to 
be discussed later for selecting a 
particular distribution for a random 
variable, and estimating its parameters.
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Many distributions are commonly used 
in the engineering profession to 
compute probability or reliability of 
events.
Many computer programs and 
spreadsheets, such as MATLAB and 
EXCEL are used for probability 
calculations with various assumed 
theoretical distributions.

Commonly Used Probability 
Distributions
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Common Discrete Probability 
Distributions

A probability distribution function is 
expressed as a real-valued function of 
the random variable.
The location, scale, and shape of the 
function are determined by its 
parameters.
Distributions commonly have one to 
three parameters.

CHAPTER 9. THEORETICAL PROBABILITY MODELS Slide No. 21
ENCE 627 ©Assakkaf

Duxbury
Thomson 
Learning

Common Discrete Probability 
Distributions

These parameters take certain values 
that are specific for the problem being 
investigated.
The parameters can be expressed in 
terms of the mean, variance, and 
skewness, but not necessarily in closed-
form expressions
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Commonly Used Discrete Distributions
– Bernoulli
– Binomial
– Geometric
– Poisson
– Other Distributions

Common Discrete Probability 
Distributions
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Common Discrete Probability 
Distributions

Bernoulli Trials and Binomial Distributions
– If a coin is tossed, either a head occurs or it 

does not occur.
– If a die is rolled, either a 3 shows or it does 

not show
– If one is vaccinated for smallpox, either he or 

she contract smallpox or he or she does not.
– A bridge failed or did not fail.
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Common Discrete Probability 
Distributions

Bernoulli Trials
– What do all these situations have in 

common?  All can be classified as 
experiments with two possible outcomes, 
each is the complement of the other.

– An experiment for which there are only two 
possible outcomes, E or    , is called a 
Bernoulli experiment or trial.

E
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Common Discrete Probability 
Distributions

Bernoulli Trials
– In Bernoulli experiment or trial, it is 

customary to refer to one of the two 
outcomes as a success S and to the other 
as a failure F.

– If the probability of success is designated 
by P(S) = p, then the probability of failure is 
P(F) = 1 – p = q
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Common Discrete Probability 
Distributions

Bernoulli Distribution
The random variable X is defined as a mapping 
from the sample space {S, F} for each trial of a 
Bernoulli sequence to the integer values {1, 0}.  
The probability function is given by

( )

( )pp

p

xp
xp

xP

X

X

−=

=








=−
=

=

1σ

µ
bygiven  are  varianceandmean  The

otherwise                 0
0for            1
1for                 

2
X
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Example: Roll of a Fair Die
If a fair die is rolled, what is the probability 
of 6 turning up?  This can be viewed as a 
Bernoulli distribution by identifying a 
success with 6 turning up and a failure with 
any of the other numbers turning up.  
Therefore,

6
5

6
111          and          

6
1

=−=−== pqp

Common Discrete Probability 
Distributions
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Example: Quality Assurance
The quality assurance department in a 
structural-steel factory inspects every 
product coming off its production line.  
The product either fails or passes the 
inspection.  Past experience indicates 
that the probability of failure (having a 
defective product) is 5%.  Determine the 
average percent of the products that will 
pass the inspection.  What are its 
variance and coefficient of variation?

Common Discrete Probability 
Distributions
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Example (cont’d): Quality Assurance
• The average percent of the product that will pass 

the inspection is

• Its variance and coefficient of variation (COV) are

( ) %9595.005.01µ ==−=== pXEX

( ) ( ) ( )

( ) ( )
( ) 229.0

95.0
0457.0Var

and
0475.095.0195.01Var

===

=−=−=

XE
X

XCOV

ppX

Common Discrete Probability 
Distributions
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Bernoulli Trials
– Suppose a Bernoulli trial is repeated a 

number of times.  It becomes of interest to 
try to determine the probability of a given 
number of successes out of the given 
number of trials.

– For example, one might be interested in 
the probability of obtaining exactly three 5’s 
in six rolls of a fair die or the probability 
that 8 people will not catch flu out of 10 
who have inoculated.

Common Discrete Probability 
Distributions
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Bernoulli Trials
Suppose a Bernoulli trial is repeated five
times so that each trial is completely 
independent of any other and p is the 
probability of success on each trial.  
Then the probability of the outcome 
SSFFS would be

( ) ( ) ( ) ( ) ( )

( )23

23

1                

                
)(P

pp

qpppqqp
SPFPFPSPSPSSFFS

−=

==

=

Common Discrete Probability 
Distributions
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Bernoulli Trials
A sequence of experiment is called a 
sequence of Bernoulli trials, or a 
binomial experiment, if
1. Only two outcome are possible on each trial.
2. The probability of success p for each trial is 

constant.
3. All trials are independent

Common Discrete Probability 
Distributions
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Example A: Roll of Fair Die Five Times
If a fair die is rolled five times and a success is 
identified in a single roll with 1 turning up, what 
is the probability of the sequence SFFSS
occurring?

( )

( ) 003.0
6
11

6
11                 

P
6
51                  

6
1

23
23

23

=





 −






=−=

==

=−==

pp

qppqqppSFFSS

pqp

Common Discrete Probability 
Distributions
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Example B: Roll of Fair Die Five Times
If a fair die is rolled five times and a success is 
identified in a single roll with 1 turning up, what 
is the probability of the sequence FSSSF
occurring?

( )

( ) 003.0
6
11

6
11                 

P
6
51                  

6
1

23
23

23

=





 −






=−=

==

=−==

pp

qpqpppqFSSSF

pqp

Common Discrete Probability 
Distributions
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Example C: Roll of Fair Die Five Times
If a fair die is rolled five times and a success is 
identified in a single roll with 1 turning up, what 
is the probability of obtaining exactly three 1’s?

Notice how this problem differs from Example 
B.  In that example we looked at one way three 
1’s can occur.  Then in Example A, we saw 
another way.

Common Discrete Probability 
Distributions
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Example C: Roll of Fair Die Five Times
Thus exactly three 1’s may occur in the 
following sequences (among others):

SFFSS FSSSF
The probability in Example A and B of each 
sequence occurring is the same, namely,

( ) ( )

6
51                  

6
1 where

003.0PP

=−==

==

pqp

SFFSSFSSSF

Common Discrete Probability 
Distributions
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Example C: Roll of Fair Die Five Times
How many more sequence will produce exactly 
three 1’s?  To answer this question think of the 
number of ways the following five blank 
positions can be filled with three S’s and two 
F’s:

b1 b2 b3 b4 b5

Common Discrete Probability 
Distributions
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Example C: Roll of Fair Die Five Times

• A given sequence is determined once the S’s 
are located.  Thus we are interested in the 
number of ways three blank positions can be 
selected for the S’s out of the five available 
blank positions b1, b2, b3, b4, and b5.

• This problem should sound familiar – it is just 
the problem of finding the number of 
combinations of 5 objects taken 3 at a time.

b1 b2 b3 b4 b5

Common Discrete Probability 
Distributions
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Example C: Roll of Fair Die Five Times
• That is, C3,5.  Thus the number of different 

sequences of successes and failures that 
produce exactly three successes (exactly three 
1’s) is

• The probability of each sequence is the same, 
that is

( ) ( ) 10
12
120

26
120

!2!3
!5

!35!3
!5

3
5

5,3 ====
−

=







=C

( )
2323

2323

6
5

6
1

6
11

6
11 














=






 −






=−= ppqp

Common Discrete Probability 
Distributions
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Example C: Roll of Fair Die Five Times
• Since the probability of each sequence is the 

same (0.003) and there are 10 mutually 
exclusive sequences that produce exactly three 
1’s, we have

( )

( )

( ) 032.0
6
5

6
110                                          

6
5

6
1

!25!3
!5                                          

6
5

6
1successes reeExactly thP

23

23

23

5,3

=













=

















−
=















= C

Common Discrete Probability 
Distributions
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Binomial Formula (Brief Review)

( ) n
nn

n
n

n
n

n
n

n bCbaCbaCaCba ,
22

,2
1

,1,0 ...++++=+ −−

( )
( )
( )
( )

543223455

4322344

32233

222

1

510105)(
464

33

2

babbababaaba
babbabaaba

babbaaba

bababa

baba

+++++=+

++++=+

+++=+

++=+

+=+

Common Discrete Probability 
Distributions
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Binomial Distribution Versus Binomial 
Formula

• The probabilistic characteristic of the car 
problem considered previously can be 
described by the binomial distribution.

• Since three cars are involved, n = 3.
• Also, the probability of each car being good is 

0.9 or p = 0.9
• The binomial coefficients when X = 0, 1, 2, and 

3 can be shown to be 1, 3, 3, and 1, 
respectively

Common Discrete Probability 
Distributions
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Binomial Distribution VS Binomial Formula
– Three Cars Example

• Let the random variable X represent the 
number of successes in three trials 0, 1, 2, or 3.  
We are interested in the probability distribution 
for this random variable.  Which outcomes of 
an experiment consisting of a sequence of 
three Bernoulli trials lead to the random values 
0, 1, 2, and 3, and what are the probabilities 
associated with these values?  The following 
table answer these questions:

Common Discrete Probability 
Distributions
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Common Discrete Probability 
Distributions

p3

3qp2

3q2p

q3

P(X = x)

3

2

1

0

x successes in 
3 trials

ppp = p3

qpp = qp2

pqp = qp2

ppq = qp2

qqp = q2p

qpq = q2p

pqq = q2p

qqq = q3

Probability of 
Simple Event

3

FSS

SFS

SSF

BGG

GBG

GGB

1SSSGGG

3

FFS

FSF

SFF

BBG

BGB

GBB

1FFFBBB

FrequencyOutcome

Three Cars Example
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Binomial Distribution VS Binomial 
Formula

• The terms in the last column of the previous 
table are the terms in the binomial expansion of 
(q + p)3.

• The last two columns in the table provide a 
probability distribution for the random variable X.

( )

( ) ( ) ( ) ( )3P2P1P0P                          
33                          

11
3223

3
3,3

2
3,2

2
3,1

3
3,0

33

=+=+=+==
+++=

+++=+==

XXXX
pqppqq

pCqpCpqCqCpq

Common Discrete Probability 
Distributions
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Binomial Distribution
• The underlying random variable X for this 

distribution represents the number of 
successes in N Bernoulli trials.  The probability 
mass function is given by 

( ) ( )

( )pNp

Np

Nxpp
x
N

xP

X

xNx

X

−=

=








=−








=

−

1σ

µ
bygiven  are  varianceandmean  The

otherwise                                 0

,...,2,1,0for         1

2
X

Common Discrete Probability 
Distributions
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Characteristic of Binomial Distribution
1. The distribution is based on N Bernoulli 

trials with only two possible outcomes.
2. The N trials are independent of each 

other.
3. The probabilities of the outcomes remain 

constant at p and (1 – p) for each trial

Common Discrete Probability 
Distributions
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Example: Rolling of a Die
If a fair die is rolled five times. What is the 
probability of rolling: (a) exactly two 3’s? and 
(b) at least 3’s?
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Example: Rolling of a Die
(b)

It is easier to compute the probability of the 
complement of this event, P(x<2), and use
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Geometric Distribution
• The underlying random variable X for this 

distribution represents the number of Bernoulli 
trials that are required to achieve the first 
success.  The probability mass function is 
given by 

( ) ( )
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Example: Traffic Accidents
Based on previous accident records, the 
probability of being in a fatal traffic accident is 
on the average 1.8X10-3 per 1000 miles of 
travel.  What is the probability of being in a fatal 
accident for the first time at 10,000 and 
100,000 miles of travel?
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Common Discrete Probability 
Distributions
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Example: Defective Items
In certain manufacturing process it is known 
that, on the average, 1 in every 100 items is 
defective.  What is the probability that the fifth 
item inspected is the first defective item found?
Using x = 5, and p = 0.01, we have
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Poisson Distribution
– This is another important distribution used 

frequently in engineering to evaluate the 
risk of damage.

– It is used in engineering problems that deal 
with the occurrence of some random event 
in the continuous dimension of time or 
space.

Common Discrete Probability 
Distributions
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Common Discrete Probability 
Distributions

– The number of occurrences of natural 
hazard, such as earthquakes, tornadoes, 
or hurricanes, in some time interval, such 
as one year, can be considered as random 
variable with Poisson distribution.

– In these examples, the number of 
occurrences in the time interval is the 
random variable.  Therefore, the random 
variable is discrete, whereas its reference 
space, the time interval is continuous.
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– This distribution is considered the limiting 
case of the binomial distribution by dividing 
the reference space (time t) into non-
overlapping interval of size ∆t.

– The occurrence of an event (i.e., a natural 
hazard) in each interval is considered to 
constitute a Bernoulli sequence.

– By considering the limiting case where the 
size ∆t approaches zero, the binomial 
distribution becomes Poisson distribution.

Common Discrete Probability 
Distributions
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Poisson Distribution
• The underlying random variable of this 

distribution is denoted by Xt, which represents 
the number of occurrences of an event of 
interest, and t = time interval.  The PMF is
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Example: Tornadoes
From the records of the past 50 years, it is 
observed that tornadoes occur in a 
particular area an average of two times a 
year.  In this case, λ = 2/year.  The 
probability of no tornadoes in the next year 
(i.e., x = 0, and t = 1 year) can be 
computed as follows:

Common Discrete Probability 
Distributions
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Example (cont’d): Tornadoes
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Negative Binomial Distribution
• Consider an experiment in which the 

properties are the same as those listed for a 
binomial experiment, with the exception that 
the trials will be repeated until a fixed
number of successes occur.

• Therefore, instead of finding the probability 
of x successes in N trials, where N is fixed, 
the interest now is in the probability that the 
kth successes occurs on the xth trial.  
Experiments of this type are called NBD.

Common Discrete Probability 
Distributions
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Negative Binomial Distribution (NBD)
• If repeated independent trials can result in a 

success with probability p, then the probability 
distribution of the random variable X, the 
number of trial on which the kth success occurs, 
is given by
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Example: Tossing Three Coins
Find the probability that a person tossing three 
coins will get either all heads or tails for the 
second time on the fifth toss.

With x = 5, k =2, p =2/8 = 1/4,
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Example (cont’d): Tossing Three Coins
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Example: Radio Tower
A radio transmission tower is designed for a 
50-year wind.  The probability of encountering 
the 50-year wind in any one year is p = 0.02.
a) What is the probability that the design wind 

velocity will be exceeded for the first time 
on the fifth year after completion of the 
structure?

b) What is the probability that a second 50-
year wind will occur exactly on the fifth 
year after completion of the structure?

Common Discrete Probability 
Distributions
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Example (cont’d): Radio Tower
a) Note: this is a geometric distribution:

b) Note: this a Negative Binomial Distribution
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Special Case of Negative Binomial 
Distribution (NBD)

• When k = 1, we get a probability distribution for 
the number of trials required for a single 
success.  An example would be the tossing of a 
coin until a head occurs.

• We might be interested in the probability that 
the first head occurs on the fourth toss.

• The NBD reduces to the special case of 
Geometric Distribution, PX(x) = p(1-p)x-1

Common Discrete Probability 
Distributions
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Hypergeometric Distribution
The probability distribution of the hypergeometric random 
variable X, the number of successes in a random sample 
size n selected from N items of which D are labeled success 
and N – D
labeled failure is
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Example: Hypergeometric Distribution
• If one wishes to find the probability of observing 

3 red cards in 5 draws from an ordinary deck of 
52 playing cards, the binomial distribution does 
not apply unless each card is replaced and the 
deck reshuffled before the next drawing is 
made.

• To solve the problem of sampling without 
replacement, let us restate the problem.

Common Discrete Probability 
Distributions
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Example: Hypergeometric Distribution
• If 5 cards are drawn at random, one is 

interested in the probability of selecting 3 red 
cards from 26 available and 2 black cards from 
26 black cards available in the deck.
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Example: Hypergeometric Distribution
• Therefore, the total number of ways to select 3 

red and 2 black cards in 5 draws is 

• The total number of ways to select any 5 cards 
from the 52 that are available is 
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Example: Hypergeometric Distribution
• Hence the probability of selecting 5 cards without 

replacement of which 3 are red and 2 are black is given 
by

• In general, we are interested in the probability of 
selecting x successes from the D items labeled success 
and n – x failures from N – k items labeled failures when 
a random sample of size n is selected from N items.

• This is known as a hypergeometric experiment
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Common Continuous Probability 
Distributions

Continuous distributions:
– Uniform
– Normal
– Lognormal
– Exponential
– Other Continuous Probability Distributions

• Chi-square, Student-t and F distributions
• Extreme Value Distributions
• Others
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Common Continuous Probability 
Distributions

Uniform Distribution
• The probability density function (PDF) for the 

uniform distribution of a random variable X is 
given by
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Common Continuous Probability 
Distributions

Uniform Distribution
• The cumulative distribution function (CDF) for 

the uniform distribution of a random variable X
is given by
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Uniform Distribution
• The uniform distribution is very important for 

performing random number generation in 
simulation as will be described later in Ch. 11.

• Due to its simplicity, it can be easily shown that 
its mean value and variance as given by the 
above equations, respectively, correspond to 
centroidal distance and centroidal moment of 
inertia with respect to a vertical axis of the area 
under the PDF.

Common Continuous Probability 
Distributions
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Probability Density Function of the Uniform Distribution
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Example: Concrete Strength
Based on experience, a structural engineer 
assesses the strength of concrete in existing 
bridge to be in the range 3000 to 4000 psi.  
Find the mean, variance, standard deviation of 
strength of the concrete.  What is the 
probability that the strength of concrete X is 
larger than 3600 psi?

Here we have a = 3000 psi and b = 4000 psi

Common Continuous Probability 
Distributions
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Example (cont’d): Concrete Strength
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Normal (Gaussian) Distribution
• The probability density function (PDF) for the 

normal distribution of a random variable X is 
given by
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Properties of Normal Distribution
1. fX(x) approaches 0 as x approaches either -∝ or 

+ ∝
2. fX(a + µ) = fX(-a + µ) for any a, i.e., symmetric 

PDF about the mean.
3. The maximum value of fX(x) (the mode) occurs at 

x = µ.
4. The inflection points of the density function 

occurs at x = µ ± σ.
5. The density function has an overall bell shape
6. The mean value µ and variance σ2 are the 

parameters of the distribution.

Common Continuous Probability 
Distributions
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Normal Distribution

Common Continuous Probability 
Distributions
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Normal Distribution

Common Continuous Probability 
Distributions
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Normal (Gaussian) Distribution
• The cumulative distribution function (CDF) for 

the normal distribution of a random variable X
is given by
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Transformation of Normal Distribution
• The evaluation of the integral of the previous 

equation requires numerical methods for each 
pair (µ, σ2).

• This difficulty can be avoided by performing a 
transformation that result in a standard normal 
distribution with a mean µ = 0 and variance σ2 =1 
denoted as Z ~ N(0,1)

• Numerical integration can be used to determine the 
cumulative distribution function of the standard 
normal distribution. 

Common Continuous Probability 
Distributions
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Transformation of Normal Distribution
• By using the transformation between the 

normal distribution X ~ N(µ, σ2) and the 
standard normal distribution Z ~ N(0,1), and the 
integration results for the standard normal, the 
cumulative distribution function for the normal 
distribution can be evaluated using the 
following transformation:

σ
µ−

=
XZ

Common Continuous Probability 
Distributions
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Standard Normal Distribution
• The density function and the cumulative 

distribution function of the standard normal 
given, respectively as
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Standard Normal Distribution
• The results of the integral Φ(z) are usually 

provided in tables (e.g., Appendix of Textbook).
• Negative z values can be obtained using the 

symmetry property of the normal distribution

• The table can also be used to determine the 
inverse Φ-1 of the Φ .  For specified values that 
are less than 0.5, the table can be used with

( ) ( )zz Φ−=−Φ 1

( ) ( ) 5.0for       111 <−Φ−=Φ= −− pppz
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Distributions

CHAPTER 9. THEORETICAL PROBABILITY MODELS Slide No. 87
ENCE 627 ©Assakkaf

Duxbury
Thomson 
Learning

Sample Table of Standard Normal

1σ
0µ

=
=

z Φ(z ) z Φ(z ) z Φ(z )
0 0.5 0.2 0.57926 0.4 0.655422

0.01 0.503989 0.21 0.583166 0.41 0.659097
0.02 0.507978 0.22 0.587064 0.42 0.662757
0.03 0.511967 0.23 0.590954 0.43 0.666402
0.04 0.515953 0.24 0.594835 0.44 0.670031
0.05 0.519939 0.25 0.598706 0.45 0.673645
0.06 0.523922 0.26 0.602568 0.46 0.677242
0.07 0.527903 0.27 0.60642 0.47 0.680822
0.08 0.531881 0.28 0.610261 0.48 0.684386
0.09 0.535856 0.29 0.614092 0.49 0.687933
0.1 0.539828 0.3 0.617911 0.5 0.691462

0.11 0.543795 0.31 0.621719 0.51 0.694974
0.12 0.547758 0.32 0.625516 0.52 0.698468
0.13 0.551717 0.33 0.6293 0.53 0.701944
0.14 0.55567 0.34 0.633072 0.54 0.705402
0.15 0.559618 0.35 0.636831 0.55 0.70884
0.16 0.563559 0.36 0.640576 0.56 0.71226
0.17 0.567495 0.37 0.644309 0.57 0.715661
0.18 0.571424 0.38 0.648027 0.58 0.719043
0.19 0.575345 0.39 0.651732 0.59 0.722405

( )zZΦ

z
z

0

( ) ( ) area shadedP =Φ=≤ zzZ

Common Continuous Probability 
Distributions
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Transformation to Standard Normal Distribution

( )

( )

( )

( ) ( ) ( ) 





 −

Φ−





 −

Φ=−=≤≤







 −

Φ==≤

=≤

=≤

∫

∫

∫

−

∞=

−

−

∞=

−

∞+

∞=


















 −

−

σ
µ

σ
µP

shown that becan It 
σ

µd 
2
1P

d σ 
2σ

1P

  variable, theChanging

d 
2σ

1P

σ
µ

2

σ
µ

2

σ
µ

2
1

2

2

2

abaFbFbXa

xzexX

zexX

xexX

XX

x
z

x
z

x

π

π

π
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Example: Concrete Strength
The structural engineer of the previous 
example decided to use a normal distribution to 
model the strength of concrete.  The mean and 
standard deviation are same as before, i.e., 
3500 psi and 288.7 psi, respectively.  What is 
the probability that the concrete strength is 
larger than 3600 psi?

psi 288.7σ         and        psi 3500µ ==

Common Continuous Probability 
Distributions
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Example (cont’d): Concrete Strength

Using linear interpolation in the following table:

( ) ( )

( )3464.01                                                   
7.288
3500360013600P13600P

Φ−=





 −

Φ−=≤−=> XX

0.6368310.35
Φ(z)0.3464

0.6330720.34
Φ(z)z

( )
633072.0636831.0

633072.0
34.035.0

34.03464.0
−

−Φ
=

−
− z
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Example (cont’d): Concrete Strength

Therefore,

( )
633072.0636831.0

633072.0
34.035.0

34.03464.0
−

−Φ
=

−
− z

( ) ( ) 635478.03464.0 =Φ=Φ∴ z

( ) 364522.0635478.013600P =−=>X

Common Continuous Probability 
Distributions
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Example (cont’d): Concrete Strength

1σ
0µ

=
=

z Φ(z ) z Φ(z ) z Φ(z )
0 0.5 0.2 0.57926 0.4 0.655422

0.01 0.503989 0.21 0.583166 0.41 0.659097
0.02 0.507978 0.22 0.587064 0.42 0.662757
0.03 0.511967 0.23 0.590954 0.43 0.666402
0.04 0.515953 0.24 0.594835 0.44 0.670031
0.05 0.519939 0.25 0.598706 0.45 0.673645
0.06 0.523922 0.26 0.602568 0.46 0.677242
0.07 0.527903 0.27 0.60642 0.47 0.680822
0.08 0.531881 0.28 0.610261 0.48 0.684386
0.09 0.535856 0.29 0.614092 0.49 0.687933
0.1 0.539828 0.3 0.617911 0.5 0.691462

0.11 0.543795 0.31 0.621719 0.51 0.694974
0.12 0.547758 0.32 0.625516 0.52 0.698468
0.13 0.551717 0.33 0.6293 0.53 0.701944
0.14 0.55567 0.34 0.633072 0.54 0.705402
0.15 0.559618 0.35 0.636831 0.55 0.70884
0.16 0.563559 0.36 0.640576 0.56 0.71226
0.17 0.567495 0.37 0.644309 0.57 0.715661
0.18 0.571424 0.38 0.648027 0.58 0.719043
0.19 0.575345 0.39 0.651732 0.59 0.722405

( )zZΦ

z
z

0

( ) ( ) area shadedP =Φ=≤ zzZ

Common Continuous Probability 
Distributions

CHAPTER 9. THEORETICAL PROBABILITY MODELS Slide No. 93
ENCE 627 ©Assakkaf

Duxbury
Thomson 
Learning

Useful Properties of Normal 
Distribution

1. The addition of n normally distributed random 
variables X1, X2,…, Xn is a normal distribution 
as follows:

The mean of Y is
nXXXXY ++++= ...321

nXXXXY µ...µµµµ
321

++++=

Common Continuous Probability 
Distributions
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The variance of Y is

2. Central limit theorem: Informally stated, the 
addition of a number of individual random 
variables, without a dominating distribution 
type, approaches a normal distribution as the 
number of the random variables approaches 
infinity.  The result is valid regardless of the 
underlying distribution types of the random 
variables.

22222 σ...σσσσ
321 nXXXXY ++++=
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Example: Modulus of Elasticity
The randomness in the modulus of elasticity 
(or Young’s modulus) E can be described by 
a normal random variable.  If the mean and 
standard deviation were estimated to be 
29,567 ksi and 1,507 ksi, respectively, 
1. What is the probability of E having a value between 

28,000 ksi and 29,500 ksi?
2. The commonly used Young’s modulus E for steel is 

29,000 ksi.  What is the probability of E being less 
than the design value, that is E 29,000 ksi?

3. What is the probability that E is at least 29,000 ksi?
4. What is the value of E corresponding to 10-

percentile?

≤

Common Continuous Probability 
Distributions
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Example (cont’d): Modulus of Elasticity

( )

( ) ( ) ( )[ ] ( )[ ]
( ) ( )    0.333200.85314-1-0.51994-1                                       

05.1105.0105.105.0                                      
1,507

29,576000,28
1,507

29,576000,29                                      

σ
µ

σ
µ500,29000,28P

==
Φ−−Φ−=−Φ−−Φ=








 −
Φ−







 −
Φ=





 −

Φ−



 −

Φ=≤<
abE

ksi 1,507σ         and        ksi 576,29µ ==

1.

( ) ( )

35197.064803.01)38.0(1                       

38.0
507,1

29576000,29000,29P

=−=Φ−=

−Φ=






 −
Φ=≤E

2.
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Sample Table of Standard Normal

1σ
0µ

=
=

( )zZΦ

z
z

0

( ) ( ) area shadedP =Φ=≤ zzZ

z Φ(z ) z Φ(z ) z Φ(z )
0 0.5 0.2 0.57926 1 0.841345

0.01 0.503989 0.21 0.583166 1.01 0.843752
0.02 0.507978 0.22 0.587064 1.02 0.846136
0.03 0.511967 0.23 0.590954 1.03 0.848495
0.04 0.515953 0.24 0.594835 1.04 0.85083
0.05 0.519939 0.25 0.598706 1.05 0.853141
0.06 0.523922 0.26 0.602568 1.06 0.855428
0.07 0.527903 0.27 0.60642 1.07 0.85769
0.08 0.531881 0.28 0.610261 1.08 0.859929
0.09 0.535856 0.29 0.614092 1.09 0.862143
0.1 0.539828 0.3 0.617911 1.1 0.864334

0.11 0.543795 0.31 0.621719 1.11 0.8665
0.12 0.547758 0.32 0.625516 1.12 0.868643
0.13 0.551717 0.33 0.6293 1.13 0.870762
0.14 0.55567 0.34 0.633072 1.14 0.872857
0.15 0.559618 0.35 0.636831 1.15 0.874928
0.16 0.563559 0.36 0.640576 1.16 0.876976
0.17 0.567495 0.37 0.644309 1.17 0.878999
0.18 0.571424 0.38 0.648027 1.18 0.881
0.19 0.575345 0.39 0.651732 1.19 0.882977

z Φ(z )
1.2 0.88493

1.21 0.88686
1.22 0.888767
1.23 0.890651
1.24 0.892512
1.25 0.89435
1.26 0.896165
1.27 0.897958
1.28 0.899727
1.29 0.901475

Common Continuous Probability 
Distributions
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Example (cont’d): Modulus of Elasticity

( ) ( )

( ) ( )[ ]
[ ]

( ) ( )

ksi 647,27150728.1576,29

28.10.900.10
507,1

576,29or            10.0
507,1

576,29

0.648030.64803-1 -1                         
38.01138.01                       

1,507
29,576000,291                       

σ
µ1000,29P1000,29P

1-1-

=×−=∴

−=Φ−=Φ=






 −
=







 −
Φ

==
Φ−−=−Φ−=








 −
Φ−=





 −

Φ−=≤−=≥

E

EE

EEE

ksi 1,507σ         and        ksi 576,29µ ==

3.

4.
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Lognormal Distribution
– Any random variable X is considered to have a 

lognormal distribution if Y = ln(X) has a normal 
probability distribution, where ln(x) is the 
natural logarithm to the base e.

– In many engineering problems, a random 
variable cannot have  negative values due to 
the physical aspects of the problem.

– In this situation, modeling the variable as 
lognormal is more appropriate.

Common Continuous Probability 
Distributions
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Lognormal Distribution
• The probability density function (PDF) for the 

lognormal distribution of a random variable X is 
given by

( )

( )

.σ  varianceand µ parameters awith 
 ddistributey lognormall is  that statesnotation  The

.σ,µLN~notation   theuse common to isIt 

0for         
2σ

1

2

2

σ
µ

2
1 2

YY

YY

x

Y
X

X
X

xe
x

xf
Y

+∞<<=




 −

−

π
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Common Continuous Probability 
Distributions

Lognormal Distribution
Ref.  Ang and Tang, 1975
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Properties of Lognormal Distribution
1. The values of the random variable X are 

positive
2. fX(x) is not symmetric density function about 

the mean value µX.
3. The mean value µX and       are not equal to 

the parameters of the distribution µy and      .
4. They are related as shown in the next 

viewgraph.
5. In many references, the notations λX and ζX

are used in place of µY and       , respectively.

2σX 2σY

2σY

Common Continuous Probability 
Distributions
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Lognormal Distribution
• Relationships between µX, µY, , and 

These two relations can be inverted as follows:

( ) 2
2

2 σ
2
1µlnµ        and        

µ
σ1lnσ YXY

X

X
Y −=




















+=

2σX
2σY

( )1µσ      and        µ
2

2
σ22

σ
2
1µ

−==






 +

Y
YY

ee XXX

Note: for small COV or δX = σX / µX < 0.3, σY ≈ δX

Common Continuous Probability 
Distributions
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Useful Properties of Lognormal 
Distribution

1. The multiplication of n lognormally distributed 
random variables X1, X2,…, Xn is a lognormal 
distribution with the following statistical 
characteristics:

The mean of W is
nXXXXW ...321=

nYYYYW µ...µµµµ
321

++++=
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The variance  or second moment of W is

2. Central limit theorem: The multiplication of a 
number of individual random variables 
approaches a lognormal distribution as the 
number of the random variables approaches 
infinity.  The result is valid regardless of the 
underlying distribution types of the random 
variables.

22222 σ...σσσσ
321 nYYYYW ++++=

Common Continuous Probability 
Distributions
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Transformation to Standard Normal Distribution

( )

( )

( ) ( ) ( ) 






 −
Φ−







 −
Φ=−=≤≤








 −
Φ==≤

=≤
−

=

∫

∫

−

∞−

−

∞+


















 −
−

Y

Y

Y

Y
XX

Y

Y

x
z

x

YY

Y

abaFbFbXa

xzexX

xe
x

xXXZ

Y

Y

Y

Y

σ
µln

σ
µlnP

shown that becan It 
σ

µlnd 
2
1P

  variable, theChanging

d 
2σ

1P             
σ

µln

σ
µln

2

0

σ
µln

2
1

2

2

π

π
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Example: Concrete Strength
A structural engineer of the previous example 
decided to use a lognormal distribution to 
model the strength of concrete.  The mean and 
standard deviation are same as before, i.e., 
3500 psi and 288.7 psi, respectively.  What is 
the probability that the concrete strength is 
larger than 3600 psi?

psi 288.7σ         and        psi 3500µ ==

Common Continuous Probability 
Distributions
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Example (cont’d): Concrete Strength

( ) ( ) ( )

( ) ( )

( ) ( )

3507.0                     

3833.01
0.00678

8.157133600ln1                     

σ
µln13600P13600P

:psi 3600 strength  y that theprobabilit The

15713.800678.0
2
13500lnσ

2
1µlnµ

 0.00678
3500
288.71ln

µ
σ1lnσ

2

22
2

=

Φ−=




 −
Φ−=








 −
Φ−=≤−=>

>

=−=−=

=

















+=




















+=

Y

Y

YXY

X

X
Y

xXX
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Example (cont’d): Concrete Strength
• The answer in this case is slightly different from 

the corresponding value (0.3645) of the 
previous example for the normal distribution 
case.

• It should be noted that this positive property of 
the random variable of a lognormal distribution 
should not be used as the only basis for 
justifying its use.

• Statistical bases for selecting probability 
distribution can be used as will be discussed 
later.

Common Continuous Probability 
Distributions
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Example: Modulus of Elasticity
The randomness in the modulus of elasticity 
(or Young’s modulus) E can be described by 
a normal random variable.  If the mean and 
standard deviation were estimated to be 
29,567 ksi and 1,507 ksi, respectively, 
1. What is the probability of E having a value between 

28,000 ksi and 29,500 ksi?
2. The commonly used Young’s modulus E for steel is 

29,000 ksi.  What is the probability of E being less 
than the design value, that is E 29,000 ksi?

3. What is the probability that E is at least 29,000 ksi?
4. What is the value of E corresponding to 10-

percentile?

≤

Common Continuous Probability 
Distributions
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Example (cont’d): Modulus of Elasticity

( )

( ) ( ) ( ) 293.10
2

051.0576,29lnσ
2
1µlnµ                    

051.0δσ    Therefore,

3.0051.0
576,29

507,1
µ
σδor  COV

2
2 =−=−=

=≈

≤===

YXY

XY

X

X
XX

ksi 1,507σ         and        ksi 576,29µ == XX

( ) ( ) ( )

( ) ( ) ( )
( ) ( ) 34405.085083.010.50678-1                                          

)04.1(1)017.0(104.1)017.0(                                          
051.0

293.10000,28ln
051.0

293.10500,29ln500,29000,28P

=−−=
Φ−−Φ−=−Φ−−Φ=







 −

−





 −

Φ=≤≤≤ E1.
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Example (cont’d): Modulus of Elasticity

( ) ( ) ( ) ( )

36317.063683.01                        

35.0135.0
051.0

293.10000,29ln000,29P

isksi29,000than lessbeingofy probabilit The

=−=

Φ−=−Φ=





 −

Φ=≤E

E2.

( ) ( )
( ) ( )( )

63683.0.063683.011                        
35.01135.01                        

000,29P1000,29P
is ksi 29,000least at  being  ofy probabilit The

=+−=
Φ−−=−Φ−=

≤−=> EE
E3.
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Example (cont’d): Modulus of Elasticity

( )

( ) ( ) ( )

( )

ksi 659,27       
or

051.028.1293.10ln
Thus,

28.190.010.0
051.0

293.10ln
or

10.0
051.0

293.10ln
:follows as computed  will value  the,percentile-10For 

11

=

−=

−=Φ−=Φ=





 −

=





 −

Φ

−−

E

E

E

E
E4.
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Exponential Distribution
– The importance of this distribution comes 

from its relationship to the Poisson 
distribution.

– For a given Poisson process, the time T
between the consecutive occurrence of 
events has an exponential distribution.

– This distribution is commonly used to 
model earthquakes.
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Exponential Distribution
• The probability density function (PDF) for the 

exponential distribution of a random variable T
is given by
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Probability Density Function of the Exponential Distribution
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Cumulative Distribution Function of the Exponential 
Distribution
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Exponential Distribution
Return Period

Based on the means of the exponential and 
Poisson distributions, the mean recurrence 
time (or return period) is defined as

λ
1  PeriodReturn =
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Example: Earthquake Occurrence
Historical records of earthquake in San 
Francisco, California, show that during the 
period 1836 – 1961, there were 16 earthquakes 
of intensity VI or more.  What is the probability 
that an earthquake will occur within the next 2 
years?  What is the probability that no 
earthquake will occur in the next 10 years?  
What is the return period of an intensity VI 
earthquake?
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Example (cont’d): Earthquake Occurrence
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