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Counting Samgle Points

m Fundamental Principle of Counting
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— In many cases, a probability problem can
be solved by counting the number of points
in the sample space S without actually
listing each elements.

— In experiments that result in finite sample
spaces, the process of identification,
enumeration, and counting are essential
for the purpose of determining the

probabilities of some outcome of interest.
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Counting Samgle Points

m  Multiplication Principle

1. If an operation can be performed
in n, ways, and if for each of these
a second operation can be
performed in n, ways, then the
two operations can be performed
together in n,n, ways.

2. In general, if there are n,
operations, then the n, operation
can be performed together in
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Counting Samgle Points
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m Example:

— How many sample points are in the sample
space when a pair of dice are thrown
once?

— The first die can land in any one of n1 =6
ways. For each of these 6 ways the
second die can also land in n2 = 6 ways.
Therefore, a pair of dice can land in
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Example (cont’d)
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Sample space points = (6) (6) = 36 points
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s~ Counting Sample Points

m Example: Three Cars

» Assume that a car can only be in good (G)
operating condition or bad (B) operating

condition.
« If there are three cars, the following situations
are possible:
G|Glc|g|B|B|G|B
G|G|B|Gg|B|G|B|B
GclB G|G|B|B|B

Sample space points = (2) (2) (2) = 8 events
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m Example (cont’d): Three Cars

Car1 Car2 Car3 83:22222

G GGG

G B GGB

G < G GBG
B B GBB

G G BGG

B< B BGB
B G BBG

B BBB
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Counting Samgle Points

m Permutation

The permutation of r elements from a set of n
elements is the number of arrangements that can
be made by selecting r elements out of the n
elements:

n!
P = forO<r<n
’ (n—r!

The order of selection counts in determining these
arrangements (order matters)
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Counting Samgle Points

m Combination

The combination of r elements from a set of n
elements is number of arrangement that can be
made by selecting r elements out of the n

elements:
n n!
c( j_ for0<r<n

(r!)(n = r)!

The order of selection does not counts in
determining these arrangements (order does not
matter)
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Counting Samgle Points

m Example: Permutations and
Combinations

From a committee of 10 people:

a) In how many ways we can choose a
chairperson, a vice chairperson, and a
secretary, assuming that one person
cannot hold more than one position?

b) In how many ways can we choose a
subcommittee of 3 people?
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Counting Samgle Points

m Example: (cont'd)

* Number of permutations:
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p - n! 10!

T

*  The number of combinations:

n n! 10!
C.,= = = =120 ways
To\r) (Mn-r) 31(10-3)!
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m Example: Standard 52-Card Deck

A) In drawing 5 cards from a 52-card deck
without replacement, what is the probability of
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42& ; getting 5 spade? (note: order does not matter)
= n(S) = C5,52 n(E) = C5,13
e |
@ 13
C _
P(E) = n(E) _ Gy _ S03-5) 1287 000
n(S) Cis, 52! 2598960

51(52-5)
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Countmg Samgle Points

m Example: Standard 52-Card Deck

B) In drawing 5 cards from a 52-card deck

1 Wwithout replacement, what is the probability of
+ |8 oJZJ_IZ v . .
Paie el getting 2 kings and 3 queens?
(rarsrary ey
seaeusiy N(S)=Cssp N(E) = Ca4 Caa
w [:‘:E ” 41 4!
x pajpanc el (F)=C, ,C,, =0 —— =24

ol (F)=CasCas 2(4-2) 31(4-3)

c,,C
ppy="E) CasCas 2 12T 00009
n(S) Gy, 52! 2598960
51(52-5)
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i Counting Sample Points

m Example: Counting for Bridge Failure

Consider a bridge that is supported by three
cables. The failure of interest is the failure of
only two cables out of three cables since it
results in failure of the bridge. What is the
number of combinations of r=2 outof n =3
that can result in bridge failure?

o3 30
o n-r) 2320 @M1
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m Example (cont’d): Counting for Bridge

Failure

This number of combinations can be
established by enumeration. The following
events can be defined:

C, = failure of cable i,where i =1, 2, and 3

The following events result in bridge failure:

C,NC, C, NG, C,NC,
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Counting Sample Points

m Example (cont’d): Counting for Bridge

Failure

If we assume that the order of failure of the

bridge is a factor, then the possible events

become C NC, C,NGC, C,NC,
C,NnC, C,NC, C,nC,

Therefore, the number of combinations in this

case is six

a3 30
P””_(n—r!)_(s—z)!_ ) =0




Slide No. 16

ENCE 627 ©Assakkaf

;%? CHAPTER 9. THEORETICAL PROBABILITY MODELS
Counting S amgle Points

m Example (cont’d): Counting for Bridge

Failure
Now, if we assume that the bridge is supported

by 20 cables, and the failure of 8 cables results
in the failure of the bridge, what is the number

.

B ~. B

g =1\

‘ of combinations that can result in bridge

failure?

200 _ 2019)-.(3)12) _ 55074
@)(7)(6)...(1H(A2!)

n!
C,,= =
> An-r) 81(20-8)
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i Counting Sample Points
m Example (cont’d): Counting for Bridge

Failure
For a real bridge, its failure can result from the

failure of at least r = 8 out of n =20. The
number of combinations in this case is

2 20! 20! 20! 20!
Y., = + + +ot
“T12) 9y ooy 2000

r=8
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Commonly Used Probability
Distributions

m Any mathematical model satisfying the
properties of PMF or PDF and CDF can
be used to quantify uncertainties in a
random variable.

m There are many different procedures to
be discussed later for selecting a
particular distribution for a random
variable, and estimating its parameters.
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“Commonly Used Probability
Distributions

m Many distributions are commonly used
in the engineering profession to
compute probability or reliability of
events.

m Many computer programs and
spreadsheets, such as MATLAB and
EXCEL are used for probability
calculations with various assumed
theoretical distributions.
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i’ Common Discrete Probability

Distributions

m A probability distribution function is
expressed as a real-valued function of
the random variable.
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m The location, scale, and shape of the
function are determined by its
parameters.

m Distributions commonly have one to
three parameters.
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i Common Discrete Probabilitz

Distributions

m These parameters take certain values
that are specific for the problem being
investigated.

m The parameters can be expressed in
terms of the mean, variance, and
skewness, but not necessarily in closed-
form expressions
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Distributions

m Commonly Used Discrete Distributions
— Bernoulli
— Binomial
— Geometric
— Poisson
— Other Distributions

————
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=i Common Discrete Probabilit

Distributions
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m Bernoulli Trials and Binomial Distributions

— |f a coin is tossed, either a head occurs or it
does not occur.

— |If a die is rolled, either a 3 shows or it does
not show

— If one is vaccinated for smallpox, either he or
she contract smallpox or he or she does not.

— A bridge failed or did not fail.
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i’ Common Discrete Probabilitz

Distributions

m Bernoulli Trials

— What do all these situations have in
common? All can be classified as
experiments with two possible outcomes,
each is the complement of the other.

— An experiment for which there are only two
possible outcomes, E or £, is called a
Bernoulli experiment or trial.
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Common Discrete Probability

Distributions
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m Bernoulli Trials

— In Bernoulli experiment or trial, it is
customary to refer to one of the two
outcomes as a success S and to the other
as a failure F.

— If the probability of success is designated
by P(S) = p, then the probability of failure is
P(F)=1-p=q
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Distributions

m Bernoulli Distribution

The random variable X is defined as a mapping
from the sample space {S, F} for each trial of a
Bernoulli sequence to the integer values {1, 0}.
The probability function is given by
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J P forx=1
P,(x)={1-p forx=0

10 otherwise

The mean and variance are given by
Wy =p

oy =pll-p)
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" Common Discrete Probability

Distributions
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m Example: Roll of a Fair Die

If a fair die is rolled, what is the probability
of 6 turning up? This can be viewed as a
Bernoulli distribution by identifying a
success with 6 turning up and a failure with
any of the other numbers turning up.

Therefore,

and g=l-p= _é:%

N~

p:
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i Common Discrete Probabilitz
Distributions

m Example: Quality Assurance

The quality assurance department in a
structural-steel factory inspects every
product coming off its production line.
The product either fails or passes the
inspection. Past experience indicates
that the probability of failure (having a
defective product) is 5%. Determine the
average percent of the products that will
pass the inspection. What are its
variance and coefficient of variation?
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Common Discrete Probabilitz
Distributions

m Example (cont’d): Quality Assurance

» The average percent of the product that will pass
the inspection is

%
S
g

iy =E(X)=p=1-0.05=0.95=95%

* Its variance and coefficient of variation (COV) are

Var(X)= p(1- p)=0.95(1-0.95)=0.0475
and

JVar(x) _0.0457 _

cor(x)= E(X) 0.95

0.229
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i’ Common Discrete Probabilitz

Distributions
m Bernoulli Trials

— Suppose a Bernoulli trial is repeated a
number of times. It becomes of interest to
try to determine the probability of a given
number of successes out of the given
number of trials.

— For example, one might be interested in
the probability of obtaining exactly three 5’s
in six rolls of a fair die or the probability
that 8 people will not catch flu out of 10
who have inoculated.
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Distributions
m Bernoulli Trials
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Suppose a Bernoulli trial is repeated five
times so that each trial is completely
independent of any other and p is the
probability of success on each ftrial.
Then the probability of the outcome
SSFFS would be
P(SSFFS)=P(S)P(S)P(F)P(F)P(S)
= ppaap =p’q’
=p*(1-pf
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m Bernoulli Trials

A sequence of experiment is called a
sequence of Bernoulli trials, or a
binomial experiment, if

1. Only two outcome are possible on each trial.

2. The probability of success p for each trial is
constant.

3. All trials are independent
N
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Distributions
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m Example A: Roll of Fair Die Five Times

If a fair die is rolled five times and a success is
identified in a single roll with 1 turning up, what
is the probability of the sequence SFFSS
occurring?

1 I
p 6 q p 6

P(SFFSS)= pagpp = p°q’

=p'(l-p) = (éﬂl—éf =0.003
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Distributions

m Example B: Roll of Fair Die Five Times

If a fair die is rolled five times and a success is
identified in a single roll with 1 turning up, what
is the probability of the sequence FSSSF
occurring?

= :1— =
p 6 q p

P(FSSSF )= qpppq = p’q’

=p’(1-p) = (2]3(1—32 =0.003
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Common Discrete Probabilitz
Distributions

m Example C: Roll of Fair Die Five Times

If a fair die is rolled five times and a success is
identified in a single roll with 1 turning up, what
is the probability of obtaining exactly three 1's?

Notice how this problem differs from Example
B. In that example we looked at one way three
1’s can occur. Then in Example A, we saw
another way.
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Distributions

m Example C: Roll of Fair Die Five Times

Thus exactly three 1’s may occur in the
following sequences (among others):
SFFSS FSSSF

The probability in Example A and B of each
sequence occurring is the same, namely,

P(FSSSF )= P(SFFSS)=0.003

1 5

where p =— g=1-p==

6 6
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Common Discrete Probability

Distributions

m Example C: Roll of Fair Die Five Times

How many more sequence will produce exactly
three 1's? To answer this question think of the
number of ways the following five blank
positions can be filled with three S’s and two
Fs:

b, b, b, b

sinlnlnls
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i Common Discrete Probabilitz
Distributions

m Example C: Roll of Fair Die Five Times
b, b, by b, b
HEEIEEEN

» A given sequence is determined once the S’s
are located. Thus we are interested in the
number of ways three blank positions can be
selected for the S’s out of the five available
blank positions b4, b,, b;, b,, and bs.

* This problem should sound familiar — it is just
the problem of finding the number of
combinations of 5 objects taken 3 at a time.
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ii" Common Discrete Probabilit
Distributions

m Example C: Roll of Fair Die Five Times

* Thatis, C;5. Thus the number of different
sequences of successes and failures that
produce exactly three successes (exactly three
1’s) is

5 S! St 120 120

C = == ==
¥ o3) 3G5-3) 31 6(2) 12

» The probability of each sequence is the same,

that is 3 2 o
pessenr-(a] -
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m Example C: Roll of Fair Die Five Times

« Since the probability of each sequence is the
same (0.003) and there are 10 mutually
exclusive sequences that produce exactly three
1’s, we have

3 2
P(Exactly three successes) = Cis(%) [%)

E=0lt)
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Distributions

m Binomial Formula (Brief Review)

(@a+b) =C,,a"+C,a"'b+C,,a"°b* +..+C, b"

(a+b)

(a+b) =a® +2ab+b*

(a+b) =a’ +3a’b+3ab* +b°

(a+b)' =a* +4a’b+6a°h* + 4ab* + b*

(a+b)’ =d’ +5a*b+10a’°b* +10a’h* + 5ab* + b’

a+b
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Distributions

m Binomial Distribution Versus Binomial
Formula
» The probabilistic characteristic of the car

problem considered previously can be
described by the binomial distribution.

» Since three cars are involved, n = 3.

* Also, the probability of each car being good is
09o0rp=0.9

» The binomial coefficients when X =0, 1, 2, and
3 can be shown to be 1, 3, 3, and 1,
respectively
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o~ Common Discrete Probabilit
Distributions

m Binomial Distribution VS Binomial Formula
— Three Cars Example

* Let the random variable X represent the
number of successes in three trials 0, 1, 2, or 3.
We are interested in the probability distribution
for this random variable. Which outcomes of
an experiment consisting of a sequence of
three Bernoulli trials lead to the random values
0, 1, 2, and 3, and what are the probabilities
associated with these values? The following
table answer these questions:
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Distributions

Three Cars Example

Outcome Is)ir:nlsgig?;ztf Frequency ); :;Ji:cl::sses in P(X=x)
BBB |FFF | gqq=q° 1 0 7
BBG | FFS qqp = q4*p
BGB | FSF qapq = ¢°p 3 1 3¢
GBB | SFF P99 = q9*p
BGG |FSS | qop=qp
GBG |SFS | pgp=qp 3 2 3qp?
GGB |SSF | ppq=qp?
GGG 5SS |  ppp=p3 1 3 P
;;{@:;,;_ CHAPTER 9. THEORETICAL PROBABILITY MODELS %
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Distributions

m Binomial Distribution VS Binomial
Formula

* The terms in the last column of the previous
table are the terms in the binomial expansion of
(g +p).

* The last two columns in the table provide a
probability distribution for the random variable X.

1=1= (q+p)3 = Co,sq3 + C1’3q2p+ Cmqu +C3’3p3
=q¢’+3¢°p+3qp’ + p’
=P(X =0)+P(X =1)+P(X =2)+P(X =3)
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m Binomial Distribution
» The underlying random variable X for this
distribution represents the number of

successes in N Bernoulli trials. The probability
mass function is given by

{[N] p(-p)™  forx=012,..,N
Px(x): X

0 otherwise
The mean and variance are given by
Hy=Np
oy = Np(1-p)
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Distributions

M

m Characteristic of Binomial Distribution

1. The distribution is based on N Bernoulli
trials with only two possible outcomes.

2. The N trials are independent of each
other.

3. The probabilities of the outcomes remain
constant at p and (1 — p) for each trial
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Distributions pi (e ooz

0 otherwise
m Example: Rolling of a Die

If a fair die is rolled five times. What is the
probability of rolling: (a) exactly two 3's? and
(b) at least 3’s?

f 2
i

T

=0.161
% CHAPTER 9. THEORETICAL PROBABILITY MODELS Slide No. 49
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Distributions I
0 otherwise
m Example: Rolling of a Die
(b)

P(x = 2): P(x = 2)+ P(x = 3)+ P(x = 4)+ P(x = 5)

It is easier to compute the probability of the
complement of this event, P(x<2), and use
P(x>2)=1-P(x<2)=1-P(x=0)-P(x=1)

e
220

=1-0.402-0.402=0.196
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m Geometric Distribution

* The underlying random variable X for this
distribution represents the number of Bernoulli
trials that are required to achieve the first
success. The probability mass function is

iven b
J P\'ZV)— [pt=p)"  forx= 01.2,..
IO otherwise
The mean and variance are given by
1 , 1-p

Ly =— Ox 2

p p
______________________________________________________________N
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| Common Discrete Probability

Distributions
m Example: Traffic Accidents

Based on previous accident records, the
probability of being in a fatal traffic accident is
on the average 1.8X10-3 per 1000 miles of
travel. What is the probability of being in a fatal
accident for the first time at 10,000 and
100,000 miles of travel?

g

P,(10,000)=1.8x107(1-1.8x10" " =1.77x10"

P,(100,000)=1.8x107(1-1.8x10° | =1.51x10"
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Common Discrete Probabilitz

Distributions

m Example: Defective Iltems

In certain manufacturing process it is known
that, on the average, 1 in every 100 items is
defective. What is the probability that the fifth
item inspected is the first defective item found?

Using x = 5, and p = 0.01, we have
Py (X)=p(1-p)~
=(0.01)(1-0.01)"
=(0.01)(0.99)" = 0.0096
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Distributions

m Poisson Distribution

— This is another important distribution used
frequently in engineering to evaluate the
risk of damage.

— It is used in engineering problems that deal
with the occurrence of some random event
in the continuous dimension of time or
space.
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Distributions

— The number of occurrences of natural
hazard, such as earthquakes, tornadoes,
or hurricanes, in some time interval, such
as one year, can be considered as random
variable with Poisson distribution.

— In these examples, the number of
occurrences in the time interval is the
random variable. Therefore, the random
variable is discrete, whereas its reference
space, the time interval is continuous.

————
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Distributions
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— This distribution is considered the limiting
case of the binomial distribution by dividing
the reference space (time ) into non-
overlapping interval of size At.

— The occurrence of an event (i.e., a natural
hazard) in each interval is considered to
constitute a Bernoulli sequence.

— By considering the limiting case where the
size At approaches zero, the binomial
distribution becomes Poisson distribution.
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m Poisson Distribution

» The underlying random variable of this
distribution is denoted by X,, which represents
the number of occurrences of an event of
interest, and ¢ = time interval. The PMF is

(A)e™
PX, (x): x!
0 otherwise

forx=0,1,2,3,...

The mean and variance are given by
Hy =M
oy =M
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m Example: Tornadoes

From the records of the past 50 years, it is
observed that tornadoes occur in a
particular area an average of two times a
year. In this case, A = 2/year. The
probability of no tornadoes in the next year
(i.,e., x =0, and r = 1 year) can be
computed as follows:
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m Example (cont’d): Tornadoes

(/It)x e ™M B (2 X 1)0 e !

P(no tornado next year)= = =0.135
x! 0!
2x1) e
P(exactly 2 tornadoes next year) = L =0.271
: 2x50) e > .
P(no tonadoes in next 50 years) = (2x50)e ™ _ 3.72x107*
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m Negative Binomial Distribution

» Consider an experiment in which the
properties are the same as those listed for a
binomial experiment, with the exception that
the trials will be repeated until a fixed
number of successes occur.

» Therefore, instead of finding the probability
of x successes in N trials, where N is fixed,
the interest now is in the probability that the
k" successes occurs on the xt" trial.
Experiments of this type are called NBD.
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m Negative Binomial Distribution (NBD)

* If repeated independent trials can result in a
success with probability p, then the probability
distribution of the random variable X, the
number of trial on which the k' success occurs,
is given by o

0 otherwise

[X 1]p"’(l —p)* forx=k,k+1,k+2,..
Px, (Y):

The mean and variance are given by
k k(1-
ol = ( : p )

Ly =— x =

p

Slide No. 61
ENCE 627 ©Assakkaf

i Common Discrete Probablhtz

Distributions
m Example: Tossing Three Coins

Find the probability that a person tossing three
coins will get either all heads or tails for the
second time on the fifth toss.

l“%\ﬁ“ﬁ CHAPTER 9. THEORETICAL PROBABILITY MODELS

With x =5, k=2, p =2/8 = 1/4,
x-1 o (SN (1Y, 1Y
P.(x)= H1-pY ™" = —ll1-=
() [k_JM ») [2_1}(4 1-1)
2 3
{4}(1) (ij _27 {01054
1)\a)4) 256
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m Example (cont'd): Tossing Three Coins

Outcome Number of Heads | Frequency

TTT 0 1

(TTH),

(THT), and 1 3

(HTT)

(THH),

(HTH), and 2 3

(HHT)

(HHH) 3 1
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m Example: Radio Tower

A radio transmission tower is designed for a
50-year wind. The probability of encountering
the 50-year wind in any one year is p = 0.02.

a) What is the probability that the design wind
velocity will be exceeded for the first time
on the fifth year after completion of the
structure?

b) What is the probability that a second 50-
year wind will occur exactly on the fifth
year after completion of the structure?
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m  Example (cont'd): Radio Tower
a) Note: this is a geometric distribution:
Py(x)=P(x=5)=p(1-p)~
=(0.02)0.98)" =0.018

b) Note: this a Negative Binomial Distribution
x—1 .
P2 (s=9)-( ) - )

- [; :3 (0.02)(1-0.02)

- m (0.02)°(0.98) =0.0015
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m Special Case of Negative Binomial
Distribution (NBD)

* When k = 1, we get a probability distribution for
the number of trials required for a single
success. An example would be the tossing of a
coin until a head occurs.

* We might be interested in the probability that
the first head occurs on the fourth toss.

» The NBD reduces to the special case of
Geometric Distribution, P (x) = p(1-p)*!




54y _CHAPTER 9. THEORETICAL PROBABILITY MODELS Slide No. 66
= oy - ENCE 627 ©Assakkaf

i© Common Discrete Probability

Distributions

m Hypergeometric Distribution

The probability distribution of the hypergeometric random
variable X, the number of successes in a random sample
size n selected from N items of which D are labeled success
and N—-D (DJ(N_DJ
labeled failure is _

AT forx=0,1,2,.m

B[]

n
0 otherwise

The mean and variance are given by

D 2 D N-n D

Ly =n— Gy =n— 1-—

N N N-1 N
;%‘ﬁf“ CHAPTER 9. THEORETICAL PROBABILITY MODELS Slide No. 67
® ENCE 627 ©Assakkaf

q

i Common Discrete Probability

Distributions

m Example: Hypergeometric Distribution

* If one wishes to find the probability of observing
3 red cards in 5 draws from an ordinary deck of
52 playing cards, the binomial distribution does
not apply unless each card is replaced and the
deck reshuffled before the next drawing is
made.

* To solve the problem of sampling without
replacement, let us restate the problem.
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m Example: Hypergeometric Distribution

* If 5 cards are drawn at random, one is
interested in the probability of selecting 3 red
cards from 26 available and 2 black cards from
26 black cards available in the deck.

2
There are 3 ways of selecting 3 red cards

and for each of these ways we can choose

. (26
2 black cards in ( 5 J ways.
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m Example: Hypergeometric Distribution

» Therefore, the total number of ways to select 3
red and 2 black cards in 5 draws is

26\ 26
32
» The total number of ways to select any 5 cards
from the 52 that are available is

(5
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m Example: Hypergeometric Distribution

» Hence the probability of selecting 5 cards without
replacement of which 3 are red and 2 are black is given

by

[26][26]
P ()= 302 (261/31231)26!/2124)) 0.3251

(sszj T (520547

* In general, we are interested in the probability of
selecting x successes from the D items labeled success
and n — x failures from N — k items labeled failures when
a random sample of size n is selected from N items.

* This is known as a hypergeometric experiment

"% CHAPTER 9. THEORETICAL PROBABILITY MODELS Slide No. 71

————
ENCE 627 ©Assakkaf

Common Continuous Probability

Distributions

-
s P

m Continuous distributions:
— Uniform
— Normal
— Lognormal
— Exponential
— Other Continuous Probability Distributions
» Chi-square, Student-t and F distributions

» Extreme Value Distributions
» Others
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m Uniform Distribution

» The probability density function (PDF) for the
uniform distribution of a random variable X is
given by

fora<x<b

1
fx(x): b—a

0 otherwise

where a < b. The mean and variance are given by

2
a+b , (b-a)
My = Ox =
2 12
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m Uniform Distribution

» The cumulative distribution function (CDF) for
the uniform distribution of a random variable X

is given by
forx<a
Fy(x)= =% fora<x<b
b—a
0 forx>b
where a < b. The mean and variance are given by
_a+b S _(b—a)2
=g o2
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m Uniform Distribution

* The uniform distribution is very important for
performing random number generation in
simulation as will be described later in Ch. 11.

* Due to its simplicity, it can be easily shown that
its mean value and variance as given by the
above equations, respectively, correspond to
centroidal distance and centroidal moment of
inertia with respect to a vertical axis of the area
under the PDF.
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Probability Density Function of the Uniform Distribution

Density Value

0 1 2 3 4 5 6
x Value
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m Example: Concrete Strength

Based on experience, a structural engineer
assesses the strength of concrete in existing
bridge to be in the range 3000 to 4000 psi.
Find the mean, variance, standard deviation of
strength of the concrete. What is the
probability that the strength of concrete X is
larger than 3600 psi?

Here we have a = 3000 psi and » = 4000 psi
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m Example (cont’d): Concrete Strength
a+b 3000+4000
2 2
Variance = 63, = (b—a) = (40003000} =83,333 psi’
12 12
Standard Deviation = +/83333 =288.7 psi
P(strength of concrete larger than 3600 psi) = P(X > 3600)

=1-F,(3600)

Mean=p, = =3500 psi

x—a

h-a

- 3600-3000 _ .
4000-3000

=1
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m Normal (Gaussian) Distribution

» The probability density function (PDF) for the
normal distribution of a random variable X is
given by

fX(x):#e_;{x“ﬂ -0 < X < 400

oN2m

It is common to use the notation X ~ N( ,(52)

The notation states that X 1s normally distributed

with a mean value p and variance 6°
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m Properties of Normal Distribution
1. fy(x) approaches 0 as x approaches either -« or

+ o

2. fda+p) =fd-a+p)forany q, ie., symmetric
PDF about the mean.

3. The maximum value of fi(x) (the mode) occurs at
X = U.

4. The inflection points of the density function
occurs atx=p=*o.

5. The density function has an overall bell shape

6. The mean value p and variance c? are the

parameters of the distribution.
N
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|
|
]
Hi ]

MNormal curves with u, < u; and 6, = 6;.
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m Normal Distribution

g‘é@g& CHAPTER 9. THEORETICAL PROBABILITY MODELS

[

L

|
]
|
i
|

l
o

Normal curves with y, = y, and g, < ;.
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m Normal (Gaussian) Distribution

* The cumulative distribution function (CDF) for
the normal distribution of a random variable X
is given by

X—

s g

F

- [ e
It is common to use the notation X ~ N( ,62)
The notation states that X is normally distributed

. . 2
with a mean value p and variance 6
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m Transformation of Normal Distribution

» The evaluation of the integral of the previous
equation requires numerical methods for each

pair (u, c?

* This difficulty can be avoided by performing a
transformation that result in a standard normal
distribution with a mean p = 0 and variance c? =1
denoted as Z ~ N(0,1)

* Numerical integration can be used to determine the
cumulative distribution function of the standard
normal distribution.
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m Transformation of Normal Distribution

* By using the transformation between the
normal distribution X ~ N(u, o2) and the
standard normal distribution Z ~ N(0,1), and the
integration results for the standard normal, the
cumulative distribution function for the normal
distribution can be evaluated using the
following transformation:

X —
z=2"F
8
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m Standard Normal Distribution

» The density function and the cumulative
distribution function of the standard normal
given, respectively as

1 L
(P(Z):me ’

z 1
()= | Jé? i

where (p(z) = special notation for PDF of standard normal

®(z) = special notation for CDF of standard normal
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m Standard Normal Distribution

* The results of the integral ®(z) are usually
provided in tables (e.g., Appendix of Textbook).

* Negative z values can be obtained using the
symmetry property of the normal distribution

O(-z)=1-0(z)

* The table can also be used to determine the
inverse @' of the ® . For specified values that
are less than 0.5, the table can be used with

z :<I)’1(p):—(1)’1(1—|p|) for p<0.5
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m Sample Table of Standard Normal

z D(z) z D(z) z D(z) @,(2)
0 0.5] 0.2] 0.57926 0.4] 0.655422 ’
0.01] 0.503989) 0.21] 0.583166] 0.41] 0.659097]
0.02] 0.507978 0.22] 0.587064] 0.42] 0.662757,
=0 0.03[ 0.511967 0.23| 0.590954 0.43| 0.666402
0.04| 0.515953 0.24] 0.594835] 0.44] 0.670031
=1 0.05] 0.519939) 0.25] 0.598706) 0.45] 0.673645)
0.06] 0.523922 0.26] 0.602568 0.46] 0.677242 o B
0.07] 0.527903 0.27] _0.60642] 0.47] 0.680822)
0.08] 0.531881 0.28] 0.610261 048] 0684386 P(Z < z)=®(z) = shaded area
0.09] 0.535856 0.29] 0.614092 0.49] 0.687933
0.1] 0.539828 0.3] 0.617911 0.5] 0.691462
0.11] 0.543795] 0.31] 0.621719) 0.51] 0.694974]
0.12] 0.547758 0.32] 0.625516 0.52] 0.698468]
0.13] 0.551717 0.33] _ 0.6293] 0.53] 0.701944
0.14] _0.55567 0.34] 0.633072 0.54] 0.705402
0.15] 0.559618] 0.35| 0.636831 0.55] _0.70884
0.16] 0.563559) 0.36] 0.640576 0.56] 0.71226)
0.17| 0.567495| 0.37| 0.644309 0.57| 0.715661
0.18] 0.571424 0.38] 0.648027] 0.58] 0.719043)
0.19] 0.575345] 0.39] 0.651732] 0.59] 0.722405,
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m Transformation to Standard Normal Distribution

P(x < x):T \lﬁ e[ ZKJ” dx

o 27w

=0

Changing the variable,

1 ok

eiodz
B
0= e

’ ( )
o
It can be shown that

P(aSXﬁb):FX(b)—FX(a):q)(b—uj_q)(a—u)
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m Example: Concrete Strength

The structural engineer of the previous
example decided to use a normal distribution to
model the strength of concrete. The mean and
standard deviation are same as before, i.e.,
3500 psi and 288.7 psi, respectively. What is
the probability that the concrete strength is
larger than 3600 psi?

p=3500 psi and o =288.7 psi
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m Example (cont'd): Concrete Strength

P(X >3600)=1-P(X <3600)=1-®

288.7
=1-®(0.3464)

[3600—3500}

Using linear interpolation in the following table:

z D(2)
0.34 0.633072
0.3464 »(2) 0.3464-034 _ ®(z)-0.633072
0.35-0.34  0.636831-0.633072
0.35 0.636831
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m Example (cont'd): Concrete Strength

0.3464-0.34  ®(z)-0.633072
0.35-0.34  0.636831-0.633072

- D(z)=D(0.3464) = 0.635478

Therefore,

P(X >3600)=1-0.635478 = 0.364522
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m Example (cont’d): Concrete Strength

@,(2)

0 z

P(Z < z)= ®(z) = shaded area

z D(z) z D(z) z @(z)
0 0.5 0.2[ 0.57926 0.4] 0.655422
0.01] 0.503989 0.21] 0.583166 0.41] 0.659097
0.02| 0.507978| 0.22] 0.587064 0.42] 0.662757
p=0 0.03]| 0.511967| 0.23]| 0.590954 0.43| 0.666402
0.04| 0.515953 0.24] 0.594835 0.44[ 0.670031
o=1 0.05/ 0.519939 0.25[ 0.598706 0.45[ 0.673645
0.06] 0.523922 0.26[ 0.602568 0.46[ 0.677242
0.07] 0.527903| 0.27] 0.60642 0.47] 0.680822
0.08] 0.531881 0.28[ 0.610261 0.48| 0.684386
0.09] 0.535856 0.29] 0.614092 0.49| 0.687933
0.1] 0.539828| 0.3 0.617911 0.5 0.691462]
0.11] 0.543795] 0.31] 0.621719 0.51] 0.694974
0.12| 0.547758 0.32| 0.625516 0.52| 0.698468
0.13]| 0.551717| 0.33 0.6293] 0.53] 0.701944
0.14| 0.55567| 0.34] 0.633072 0.54| 0.705402
0.15] 0.559618] 0.35[ 0.636831 0.55[ 0.70884
0.16] 0.563559 0.36[ 0.640576 0.56[ 0.71226
0.17] 0.567495] 0.37[ 0.644309 0.57[ 0.715661
0.18] 0.571424 0.38] 0.648027 0.58] 0.719043
0.19] 0.575345] 0.39| 0.651732 0.59| 0.722405
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m  Useful Properties of Normal
Distribution

1. The addition of » normally distributed random
variables X, X,....,
as follows:

X, is a normal distribution

Y=X+X,+X;+.+X,

The mean of Yis

Uy

=My, THy, tHy Ty
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The variance of Yis

2 _ 2 2 2 2
Oy =0y +0y +0y +..+0y

2. Central limit theorem: Informally stated, the
addition of a number of individual random
variables, without a dominating distribution
type, approaches a normal distribution as the
number of the random variables approaches
infinity. The result is valid regardless of the
underlying distribution types of the random
variables.
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m Example: Modulus of Elasticity

The randomness in the modulus of elasticity
(or Young’s modulus) E can be described by
a normal random variable. If the mean and
standard deviation were estimated to be
29,567 ksi and 1,507 ksi, respectively,

1. What is the probability of E having a value between
28,000 ksi and 29,500 ksi?

2. The commonly used Young’s modulus E for steel is
29,000 ksi. What is the probab#ity of E being less
than the design value, thatis E 29,000 ksi?

3. What is the probability that E is at least 29,000 ksi?

4. What is the value of E corresponding to 10-
percentile?
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m Example (cont’d): Modulus of Elasticity

pn=29,576 ksi and 0 =1,507 ksi

1. P(28.000 < £ <29,500) = q{b;“} —q{ﬂ}
(¢ [¢)

(D[29,000—29,576} ~ ®[28,000—29,576}

1,507 1,507
®(-0.05)-D(-1.05) = [1- (0.05)]-[1 - (1.05)]
=(1-0.51994)-(1-0.85314)=0.33320

P(E <29,000)= @(29’()()1()5;,2/9576) =d(-0.38)

=1-®(0.38) =1-0.64803=0.35197
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3 Common Continuous Probability
Distributions

m Sample Table of Standard Normal

z D(z) z D(z) z D(z) z ®(z)

0 05 02 0.57926 1] 0.841345 72| 0.88493
0.01] 0.503989 0.21] 0.583166 T.01] 0.843752 121] _0.88686
0.02] 0.507978 0.22] 0.567064 1.02] 0.846136 1.22] 0.888767

-0 0.03] 0.511967 0.23] 0.590954 1.03] 0.848495]  1.23| 0.890651
0.04] 0.515953 0.24] 0.594835 T.04] 0.85083 1.24] 0.892512
-1 0.05] 0.519939) 0.25[ 0.598706 1.05] 0.853141 1.25| 089435:|
0.06] 0.523922 0.26] 0.602568 1.06] 0.855428 1.26] 0.896165
0.07] 0.527903 0.27]_0.60642 1.07] _0.85769 1271 0897958
0.08] 0.531881 0.28] 0.610261 1.08] 0.859929 128 0.899727
0.09] 0.535856 0.29] 0.614092 7.00] 0.862143 129 0.901475
0.1] 0539828 0.3] 0.617911 7.1] 0.864334
0.11] 0.543795 0.31] 0.621719 71| 0.8665 @,(z)
0.12] 0.547758 0.32] 0.625516 T.12] 0.868643
0.13 0.551717 033 0.6293 T.13] 0.870762
0.14] 055567 0.34] 0.633072 T.14] 0.872857
0.15] 0.559618 0.35] 0.636831 T15] 0.874928
0.16] 0.563559 0.36] 0.640576 7.16] 0.876976
0.17] 0.567495 0.37] 0.644309 1.17] 0.878999 -
0.18] 0.571424 0.38] 0.648027 T.18] __ 0.881 o 2
0.19] 0.575345 0.39] 0.651732 7.19] 0.882977

P(Z < z)= ®(z) = shaded area




;%%_",{ CHAPTER 9. THEORETICAL PROBABILITY MODELS S|lde No. 98

ENCE 627 ©Assakkaf

Common Continuous Probability
Distributions

m Example (cont’d): Modulus of Elasticity
p=29,576 ksi and 0 =1,507 ksi

3. P(E >29,000)=1-P(E < 29,000)=1- CD{ “}
(¢

29,000 29,576
{ 1,507 }
—®(-0.38)=1-[1-®(0.38)]
[ 0.64803] = 0.64803
4. @(E_29’576j =0.10  or [E 29. 576] =®"(0.10)=-®"(0.90)=-1.28
1,507 1,507
E =29,576-1.28x1507 = 27,647 ksi
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m Lognormal Distribution

— Any random variable X is considered to have a
lognormal distribution if Y = In(X) has a normal
probability distribution, where In(x) is the
natural logarithm to the base e.

— In many engineering problems, a random
variable cannot have negative values due to
the physical aspects of the problem.

— In this situation, modeling the variable as
lognormal is more appropriate.
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m Lognormal Distribution

» The probability density function (PDF) for the
lognormal distribution of a random variable X'is
given by

L A
_782 ° for 0 < x <+

fx\x)=

X( ) XGy, 27w

It is common to use the notation X ~ LN(uY ; G?,)
The notation states that X is lognormally distributed

. . 2
with a parameters 1, and variance ¢y .
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m Lognormal Distribution

Ref. Ang and Tang, 1975
g=0d

Medion =

19

lm'. 3.8 Log-normal density funetions
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Distributions

m Properties of Lognormal Distribution

1. The values of the random variable X are
positive

2. fx) is not symmetric density function about
the mean value p,.

3. The mean value p, and c are not equal to
the parameters of the dlstrlbutlon u, and GY

4. They are related as shown in the next
viewgraph.

5. In many references, the notations A, and Cy
are used in place of p, and Gi , respectively.
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m Lognormal Distribution
* Relationships between uy, 1y, 65 ,and o;

2
> =In 1+(0Xj and p, =ln(uX)—lG§
My 2

These two relations can be inverted as follows:

b, =e and cizui((e";—l)

Note: for small COV or 8, = o/ 11, < 0.3, oy, = &y
____________________________________________________________N
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m Useful Properties of Lognormal
Distribution
1. The multiplication of n lognormally distributed
random variables X,, X,...., X, is a lognormal

distribution with the following statistical
characteristics:

W=XX,X,.X,

The mean of Wis

Wy =Hy tHy, TRy T T 1y
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The variance or second moment of Wis

2 _ 2 2 2 2
Oy =0y +0y +0} +...+0y

2. Central limit theorem: The multiplication of a
number of individual random variables
approaches a lognormal distribution as the
number of the random variables approaches
infinity. The result is valid regardless of the
underlying distribution types of the random
variables.
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m Transformation to Standard Normal Distribution

I Inx—py
InX —p, N {7(7] }
Z=—= P(X <x)= dx
: I
Changing the variable,
Inx—py
% —i Inx—p
P(X <x)= ——e 2dz=0 L
( i ’[ \/_ [ Gy J

It can be shown that

P<asm):Fx<b>—FX<a>:¢[lnb-“y}@[lna—uy}
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m Example: Concrete Strength

A structural engineer of the previous example
decided to use a lognormal distribution to
model the strength of concrete. The mean and
standard deviation are same as before, i.e.,
3500 psi and 288.7 psi, respectively. What is
the probability that the concrete strength is
larger than 3600 psi?

p=3500 psi and o =288.7 psi
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m Example (cont'd): Concrete Strength
) o V| 2887 |
Oy = lnll J{ij ] = ln{l-&( 3500 j } =0.00678

w, = ln(ux)—%cf, = 1n(3500)—%(0.00678): 8.15713
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The probability that the strength > 3600 psi :

P(X >3600)=1-P(X <3600)= 1_@{1“%}

Oy

=l_q{ln(3600)—8.15713}=1_®(0.3833)

4/0.00678
=0.3507
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m Example (cont’d): Concrete Strength

* The answer in this case is slightly different from
the corresponding value (0.3645) of the
previous example for the normal distribution
case.

* It should be noted that this positive property of
the random variable of a lognormal distribution
should not be used as the only basis for
justifying its use.

« Statistical bases for selecting probability
distribution can be used as will be discussed
later.
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m  Example: Modulus of Elasticity

The randomness in the modulus of elasticity
(or Young’s modulus) E can be described by
a normal random variable. If the mean and
standard deviation were estimated to be
29,567 ksi and 1,507 ksi, respectively,

1. What is the probability of £ having a value between
28,000 ksi and 29,500 ksi?

2. The commonly used Young’s modulus E for steel is
29,000 ksi. What is the probability of E being less
than the design value, that is £< 29,000 ksi?

3. What is the probability that £ is at least 29,000 ksi?

4. What is the value of E corresponding to 10-
percentile?
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m Example (cont’d): Modulus of Elasticity
Wy =29,576 ksi and 6, =1,507 ksi

CoV(x)ors, =%x =150
W, 29576

Therefore, o, =5, =0.051

=0.051<0.3

=10.293

2
wy, = 1n(uX)—%c§ =1n(29,576)— (0'025 )

1 P(< 28,000 < £ < 29,500) = q)[1n(29,500)—10.293]_(1n(28,000)—10.293j

0.051 0.051
=®(-0.017)~ ®(~1.04) = (1-D(0.017)) - (1- D(1.04))
=(1-0.50678)—(1-0.85083) = 0.34405
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m Example (cont’d): Modulus of Elasticity

2. The probability of E being less than 29,000 ksi is
In(29,000)-10.293
0.051
=1-0.63683=0.36317

P(E£29,000):<D( j:cD(—O.35):1—(D(O.35)

3. The probability of E being at least 29,000 ksi is
P(E > 29,000)=1-P(E <29,000)
=1-®(-0.35)=1-(1-®(0.35))
=1-1+0.63683 = 0.0.63683
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m Example (cont’d): Modulus of Elasticity

4, For 10 - percentile, the £ value will computed as follows :
o In(£)-10.293) _ 0.10
0.051

or
In(E)-10.293

( 0.051

Thus,

In E =10.293-1.28(0.051)

or

j =®7(0.10)=-®"(0.90)=-1.28

E =27,659 ksi
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m Exponential Distribution

— The importance of this distribution comes
from its relationship to the Poisson
distribution.

— For a given Poisson process, the time T
between the consecutive occurrence of
events has an exponential distribution.

— This distribution is commonly used to
model earthquakes.
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m Exponential Distribution

» The probability density function (PDF) for the
exponential distribution of a random variable T’

is given by
j re ™  fort>0
10 otherwise

The cumulative distribution function is given by
Fr(t)=1-e™

The mean value and the variance are given, respectively, by
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Probability Density Function of the Exponential Distribution

..\“7

1.2
A=1

Density Value
o
(e

0 \ \
0 1 2 3 4 5 6
t Value
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Cumulative Distribution Function of the Exponential

Distribution
1.2

14 L
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= 0.6
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Distributions

m Exponential Distribution

m Return Period

Based on the means of the exponential and
Poisson distributions, the mean recurrence
time (or return period) is defined as

Return Period :%
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m Example: Earthquake Occurrence

Historical records of earthquake in San
Francisco, California, show that during the
period 1836 — 1961, there were 16 earthquakes
of intensity VI or more. What is the probability
that an earthquake will occur within the next 2
years? What is the probability that no
earthquake will occur in the next 10 years?
What is the return period of an intensity VI
earthquake?
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m Example (cont'd): Earthquake Occurrence

Number of Earthquakes 16
Number of Years 1961-1816
The probability that an earthquake will occur within the next 2 yearsis

P(T<2)=1-e™ =1-¢* = 0226
The probability that no earthquake will occur in the next 10 yearsis
P(T>10)=1-F,(10)=1-(1-¢"")=¢ """ = 0278

The return period is given by

A=

=0.128 per year

= 1 =7.8 years

return periodzE(T)z% 0128




